6.12 寻找想象解决方案
Section outline
-
Louis calculates that the area of a rectangle is represented by the equation . Did Louis calculate it right? Explain based on the degree and zeros of the function .
::Louis 计算矩形区域代表方程式 3x4+7x2=2。 Louis 计算正确吗? 根据函数的度和零解释 。Imaginary Solutions
::想象解决方案Remember, imaginary solutions always come in pairs. To find the imaginary solutions to a function, use the Quadratic Formula .
::记住, 想象中的解决方案总是一对一。 要找到函数的假想解决方案, 请使用 Quadratic 公式 。Let's solve .
::让我们解析 f( x) = 3x4 - x2 - 14 。First, this quartic function can be factored just like a quadratic equation .
::首先,这个二次函数可以像二次方程一样 被计算成二次方程。
::g(x) =x4+21x2+90Now, because neither factor can be factored further and there is no term , we can set each equal to zero and solve.
::现在,因为两个因素都无法进一步考虑,而且没有x-sterm,我们可以将每个因素设定为零,解决。
::3x2 - 7= 0x2+2= 03x2= 7x2 @ @ 2andx2= 73x%2 或 i2x%73 或 213Including the imaginary solutions, there are four, which is what we would expect because the degree of this function is four.
::包括假想的解决办法,有四个,这是我们所期望的,因为这一职能的程度是四个。Now, let's find all the solutions of the function .
::现在,让我们找到函数 g( x) =x4+21x2+90的所有解决方案 。When graphed, this function does not touch the axis. Therefore , all the solutions are imaginary. To solve, this function can be factored like a quadratic equation. The factors of 90 that add up to 21 are 6 and 15.
::图形化时,此函数不会触动 x - 轴。因此,所有解决方案都是想象的。要解决,此函数可以像二次方程一样计算。总计为21的90系数是6和15。
::g(x)=x4+21x2+900=(x2+6)(x2+15)Now, set each factor equal to zero and solve.
::现在,设定每个系数等于零,然后解决。
::x2+6 = 0x2+15= 0x2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\15\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Finally, let's find the function that has the solution 3, -2, and .
::最后,让我们找到一个具有3,2和4+i解决方案的功能。Notice that one of the given solutions involves an imaginary number. Imaginary and complex solutions always come in pairs, so is also a factor. The two factors are complex conjugates. Translate each solution into a factor and multiply them all together.
::请注意, 给定的解决方案之一包含一个虚构的数字。 想象和复杂的解决方案总是同时出现, 因此 4- i 也是一个因素。 这两个因素是复杂的共鸣。 将每个解决方案转换成一个要素, 并一起乘以它们 。Any multiple of this function would also have these roots. For example, would have these roots as well.
::此函数的任何多个函数也会有这些根。 例如, 2x4-18x3+38x2+62x-204也会有这些根。Examples
::实例Example 1
::例1Earlier, you were asked to determine if Louis calculated his work correctly.
::早些时候,你被要求 确定路易是否正确计算了他的作品First we need to change the equation to standard form . Then we can factor it.
::首先我们要把方程式改成标准形式 然后我们再考虑一下
::3x4+7x2=23x4+7x2-2=0(3x2+1)(x2+2)=0Solving for x we get
::我们得到的x的溶解
::3x2+1=0x2+2=0x2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\All of the solutions are imaginary and the area of a rectangle must have real solutions. Therefore Louis did not calculate correctly.
::所有解决方案都是虚构的,矩形区域必须有真正的解决方案,因此路易没有正确计算。Example 2
::例2Find all the solutions to the following function: .
::查找以下函数的所有解决方案 : f( x) = 25x3 - 120x2+81x- 4 。First, graph the function.
::首先,绘制函数图。Using the Rational Root Theorem , the possible realistic zeros could be , 1, or 4. Let’s try these three possibilities using synthetic division .
::使用理性根理论, 现实的零位可能为125、1或4, 让我们使用合成分解来尝试这三种可能性。Of these three possibilities, only 4 is a zero. The leftover polynomial , is not factorable, so we need to use the Quadratic Formula to find the last two zeros.
::在这三种可能性中,只有4种是零。剩余多面体, 25x2-20x+1是不可计数的, 所以我们需要使用二次曲线公式来找到最后两个零。
::x=20202-4(25)(1)(1)(2)(25)=20400-10050=2010350或2350.746和0.054Helpful Hint: Always find the decimal values of each zero to make sure they match up with the graph.
::帮助提示: 总是找到每个零的十进制值, 以确保它们与图形匹配 。Example 3
::例3Find all the solutions to the following function: .
::为以下函数查找所有解决方案: f( x)=4x4+35x2- 9。is factorable. .
::f(x) = 4x4+35x2- 9 可乘因数。 ac36。
::4x4+35x2-94x4+36x2-x2-94x2(x2+9)-1(x2+9)-(x2+9)-(x2+9)-(x2+9)-(4x2--1)Setting each factor equal to zero, we have:
::确定每个系数等于零,我们有:
::4x2 - 1=0x2+9=04x2=1x2=1x29orx2=14x_%3ix#12Example 4
::例4Find the equation of a function with roots 4, and .
::查找函数的等式, 根4、 2 和 1- i 。Recall that irrational and imaginary roots come in pairs. Therefore, all the roots are 4, . Multiply all 5 roots together.
::回顾不合理和想象中的根是双对的。 因此,所有根都是4, 2, 2, 2, 1+i, 1-i。 将所有5根并列在一起。
:x2-2)x5-6x4-8x3-20x+16)
Review
::回顾Find all solutions to the following functions. Use any method.
::为以下函数寻找所有解决方案。使用任何方法。-
:x) =x4+x3 - 12x2 - 10x+20
-
:xx) = 4x3 - 20x2 - 3x+15
-
:xx) = 2x4 - 7x2 - 30
-
::f(x) =x3+5x2+12x18 -
:x)=4x4+4x3-22x2-8x+40
-
:x) = 3x4+4x2- 15
-
:x) = 2x3- 6x2+9x- 27
-
:x) = 6x4 - 7x3 - 280x2 - 419x+280
-
:x)=9x4+6x3_28x2+2x+11
-
::f(x) = 2x5 - 19x4+30x3+97x2 - 260x+150
Find a function with the following roots.
::查找含有以下根的函数 。-
::4, i 4, i -
::- 3,-2,i -
::5-1+i 5-1+1 -
Writing:
Write down the steps you use to find all the zeros of a polynomial function.
::写入: 写下您用来查找多面函数的所有零的步数 。 -
Writing:
Why do imaginary and irrational roots always come in pairs?
::写道:为什么想象和非理性的根总是成对? -
Challenge:
Find all the solutions to
.
::挑战: 找到 f( x) =x5+x3+8x2+8的所有解决方案。
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -