Section outline

  • Louis calculates that the area of a rectangle is represented by the equation 3 x 4 + 7 x 2 = 2 . Did Louis calculate it right? Explain based on the degree and zeros of the function .
    ::Louis 计算矩形区域代表方程式 3x4+7x2=2。 Louis 计算正确吗? 根据函数的度和零解释 。

    Imaginary Solutions
    ::想象解决方案

    Remember, imaginary solutions always come in pairs. To find the imaginary solutions to a function, use the Quadratic Formula .
    ::记住, 想象中的解决方案总是一对一。 要找到函数的假想解决方案, 请使用 Quadratic 公式 。

    Let's solve f ( x ) = 3 x 4 x 2 14
    ::让我们解析 f( x) = 3x4 - x2 - 14 。

    First, this quartic function can be factored just like a quadratic equation .
    ::首先,这个二次函数可以像二次方程一样 被计算成二次方程。

    g ( x ) = x 4 + 21 x 2 + 90
    ::g(x) =x4+21x2+90

    Now, because neither factor can be factored further and there is no x term , we can set each equal to zero and solve.
    ::现在,因为两个因素都无法进一步考虑,而且没有x-sterm,我们可以将每个因素设定为零,解决。

    3 x 2 7 = 0 x 2 + 2 = 0 3 x 2 = 7 x 2 = 2 a n d x 2 = 7 3 x = ± 2   o r   ± i 2 x = ± 7 3   o r   ± 21 3

    ::3x2 - 7= 0x2+2= 03x2= 7x2 @ @ 2andx2= 73x%2 或 i2x%73 或 213

    Including the imaginary solutions, there are four, which is what we would expect because the degree of this function is four.
    ::包括假想的解决办法,有四个,这是我们所期望的,因为这一职能的程度是四个。

    Now, let's find all the solutions of the function g ( x ) = x 4 + 21 x 2 + 90 .
    ::现在,让我们找到函数 g( x) =x4+21x2+90的所有解决方案 。

    When graphed, this function does not touch the x axis. Therefore , all the solutions are imaginary. To solve, this function can be factored like a quadratic equation. The factors of 90 that add up to 21 are 6 and 15.
    ::图形化时,此函数不会触动 x - 轴。因此,所有解决方案都是想象的。要解决,此函数可以像二次方程一样计算。总计为21的90系数是6和15。

    g ( x ) = x 4 + 21 x 2 + 90 0 = ( x 2 + 6 ) ( x 2 + 15 )

    ::g(x)=x4+21x2+900=(x2+6)(x2+15)

    Now, set each factor equal to zero and solve.
    ::现在,设定每个系数等于零,然后解决。

    x 2 + 6 = 0 x 2 + 15 = 0 x 2 = 6 a n d x 2 = 15 x = ± i 6 x = ± i 15

    ::x2+6 = 0x2+15= 0x2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\15\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    Finally, let's find the function that has the solution 3, -2, and 4 + i .
    ::最后,让我们找到一个具有3,2和4+i解决方案的功能。

    Notice that one of the given solutions involves an imaginary number. Imaginary and complex solutions always come in pairs, so 4 i is also a factor. The two factors are complex conjugates.  Translate each solution into a factor and multiply them all together.
    ::请注意, 给定的解决方案之一包含一个虚构的数字。 想象和复杂的解决方案总是同时出现, 因此 4- i 也是一个因素。 这两个因素是复杂的共鸣。 将每个解决方案转换成一个要素, 并一起乘以它们 。

    lesson content

    Any multiple of this function would also have these roots. For example, 2 x 4 18 x 3 + 38 x 2 + 62 x 204 would have these roots as well.
    ::此函数的任何多个函数也会有这些根。 例如, 2x4-18x3+38x2+62x-204也会有这些根。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to determine if  Louis calculated his work correctly. 
    ::早些时候,你被要求 确定路易是否正确计算了他的作品

    First we need to change the equation to standard form . Then we can factor it.
    ::首先我们要把方程式改成标准形式 然后我们再考虑一下

    3 x 4 + 7 x 2 = 2 3 x 4 + 7 x 2 2 = 0 ( 3 x 2 + 1 ) ( x 2 + 2 ) = 0

    ::3x4+7x2=23x4+7x2-2=0(3x2+1)(x2+2)=0

    Solving for x we get
    ::我们得到的x的溶解

    3 x 2 + 1 = 0 x 2 + 2 = 0 x 2 = 1 3 a n d x 2 = 2 x = ± i 1 3 x = ± i 2

    ::3x2+1=0x2+2=0x2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    All of the solutions are imaginary and the area of a rectangle must have real solutions. Therefore Louis did not calculate correctly.
    ::所有解决方案都是虚构的,矩形区域必须有真正的解决方案,因此路易没有正确计算。

    Example 2
    ::例2

    Find all the solutions to the following function:  f ( x ) = 25 x 3 120 x 2 + 81 x 4 .
    ::查找以下函数的所有解决方案 : f( x) = 25x3 - 120x2+81x- 4 。

    First, graph the function.
    ::首先,绘制函数图。

    Using the Rational Root Theorem , the possible realistic zeros could be 1 25 , 1, or 4. Let’s try these three possibilities using synthetic division .
    ::使用理性根理论, 现实的零位可能为125、1或4, 让我们使用合成分解来尝试这三种可能性。

    Of these three possibilities, only 4 is a zero. The leftover polynomial , 25 x 2 20 x + 1 is not factorable, so we need to use the Quadratic Formula to find the last two zeros.
    ::在这三种可能性中,只有4种是零。剩余多面体, 25x2-20x+1是不可计数的, 所以我们需要使用二次曲线公式来找到最后两个零。

    x = 20 ± 20 2 4 ( 25 ) ( 1 ) 2 ( 25 ) = 20 ± 400 100 50 = 20 ± 10 3 50   o r   2 ± 3 5 0.746   a n d   0.054

    ::x=20202-4(25)(1)(1)(2)(25)=20400-10050=2010350或2350.746和0.054

    Helpful Hint: Always find the decimal values of each zero to make sure they match up with the graph.
    ::帮助提示: 总是找到每个零的十进制值, 以确保它们与图形匹配 。

    Example 3
    ::例3

    Find all the solutions to the following function:  f ( x ) = 4 x 4 + 35 x 2 9 .
    ::为以下函数查找所有解决方案: f( x)=4x4+35x2- 9。

    f ( x ) = 4 x 4 + 35 x 2 9 is factorable. a c = 36 .
    ::f(x) = 4x4+35x2- 9 可乘因数。 ac36。

    4 x 4 + 35 x 2 9 4 x 4 + 36 x 2 x 2 9 4 x 2 ( x 2 + 9 ) 1 ( x 2 + 9 ) ( x 2 + 9 ) ( 4 x 2 1 )

    ::4x4+35x2-94x4+36x2-x2-94x2(x2+9)-1(x2+9)-(x2+9)-(x2+9)-(x2+9)-(4x2--1)

    Setting each factor equal to zero, we have:
    ::确定每个系数等于零,我们有:

    4 x 2 1 = 0 x 2 + 9 = 0 4 x 2 = 1 x 2 = 9 o r x 2 = 1 4 x = ± 3 i x = ± 1 2

    ::4x2 - 1=0x2+9=04x2=1x2=1x29orx2=14x_%3ix#12

    Example 4
    ::例4

    Find the equation of a function with roots 4, 2 and 1 i .
    ::查找函数的等式, 根4、 2 和 1- i 。

    Recall that irrational and imaginary roots come in pairs. Therefore, all the roots are 4, 2 , 2 , 1 + i , 1 i . Multiply all 5 roots together.
    ::回顾不合理和想象中的根是双对的。 因此,所有根都是4, 2, 2, 2, 1+i, 1-i。 将所有5根并列在一起。

    ( x 4 ) ( x 2 ) ( x + 2 ) ( x ( 1 + i ) ) ( x ( 1 i ) ) ( x 4 ) ( x 2 2 ) ( x 2 2 x + 2 ) ( x 3 4 x 2 2 x + 8 ) ( x 2 2 x + 2 ) x 5 6 x 4 + 8 x 3 4 x 2 20 x + 16

    :sadx2-2)x5-6x4-8x3-20x+16)

    Review
    ::回顾

    Find all solutions to the following functions. Use any method.
    ::为以下函数寻找所有解决方案。使用任何方法。

    1. f ( x ) = x 4 + x 3 12 x 2 10 x + 20
      :sadx) =x4+x3 - 12x2 - 10x+20
    2. f ( x ) = 4 x 3 20 x 2 3 x + 15
      :sadxx) = 4x3 - 20x2 - 3x+15
    3. f ( x ) = 2 x 4 7 x 2 30
      :sadxx) = 2x4 - 7x2 - 30
    4. f ( x ) = x 3 + 5 x 2 + 12 x + 18
      ::f(x) =x3+5x2+12x18
    5. f ( x ) = 4 x 4 + 4 x 3 22 x 2 8 x + 40
      :sadx)=4x4+4x3-22x2-8x+40
    6. f ( x ) = 3 x 4 + 4 x 2 15
      :sadx) = 3x4+4x2- 15
    7. f ( x ) = 2 x 3 6 x 2 + 9 x 27
      :sadx) = 2x3- 6x2+9x- 27
    8. f ( x ) = 6 x 4 7 x 3 280 x 2 419 x + 280
      :sadx) = 6x4 - 7x3 - 280x2 - 419x+280
    9. f ( x ) = 9 x 4 + 6 x 3 28 x 2 + 2 x + 11
      :sadx)=9x4+6x3_28x2+2x+11
    10. f ( x ) = 2 x 5 19 x 4 + 30 x 3 + 97 x 2 260 x + 150
      ::f(x) = 2x5 - 19x4+30x3+97x2 - 260x+150

    Find a function with the following roots. 
    ::查找含有以下根的函数 。

    1. 4 , i
      ::4, i 4, i
    2. 3 , 2 i
      ::- 3,-2,i
    3. 5 , 1 + i
      ::5-1+i 5-1+1
    4. 2 , 1 3 , 4 2
    5. Writing: Write down the steps you use to find all the zeros of a polynomial function.
      ::写入: 写下您用来查找多面函数的所有零的步数 。
    6. Writing: Why do imaginary and irrational roots always come in pairs?
      ::写道:为什么想象和非理性的根总是成对?
    7. Challenge: Find all the solutions to f ( x ) = x 5 + x 3 + 8 x 2 + 8 .
      ::挑战: 找到 f( x) =x5+x3+8x2+8的所有解决方案。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。