Section outline

  • If f(x) = x + 2, and g(x) = 2x + 4, what is f(g(x))?
    ::如果f(x) = x + 2, g(x) = 2x + 4, 什么是 f(g(x) ) ?

    A function can be conceptualized as a 'black box'. The input, or x value is placed into the box, and the box performs a specific set of operations on it. Once the operations are complete, the output (the " f(x) " or " y " value) is retrieved. Once the output is retrieved, the box is ready to work on the next input.
    ::函数可以概念化为“黑盒 ” 。 输入或 x 值被放入框中, 框将执行特定的操作。 一旦操作完成, 输出( f(x) 或“y” 值) 就会被检索。 一旦输出被检索, 框将准备对下一个输入工作 。

    Using this idea, function composition can be seen as a box inside of a box. The input x value goes into the inner box, and then the output of the inner box is used as the input of the outer box.
    ::使用这个概念, 函数构成可以被视为框内的一个框。 输入 x 值会进入内框, 然后内框的输出会用作外框的输入 。

    Composition of Functions
    ::职能的组成

    Functions are often described in terms of “input” and “output.” For example, consider the function f ( x ) = 2 x + 3. When we input an x value, we output a y value, or a function value. We find the output by taking the input x , multiplying by 2, and adding 3. We can do this for any value of x . Now consider a second function g ( x ) = 5 x . For this function too, we can take an x value, input the x into g ( x ), and obtain an output. What happens if we take the output of g and use it as the input of f ?
    ::函数通常用“投入”和“产出”来描述。例如,考虑函数 f(x) = 2x + 3. 当我们输入一个 x 值时,我们输出一个 y 值或一个 函数值。我们通过输入 x 找到输出,乘以 2 和增加 3 。我们可以为 x 的任何值这样做。现在考虑第二个 函数 g(x) = 5x 。对于这个函数,我们也可以将一个 x 值输入 g(x),将 x 输入到 g(x) 中,然后获得输出。如果我们将 g 的输出作为 f 的输入,结果会怎样?

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were given a problem about finding a composite function .
    ::早些时候,有人给了你一个 寻找复合函数的问题。

    If f(x) = x + 2 , and g(x) = 2x + 4 , what is f(g(x)) ?
    ::如果f(x) = x + 2, g(x) = 2x + 4, 什么是 f(g(x) ) ?

    f(g(x)) = f(2x + 4) = (2x + 4) + 2 = 2x + 6
    ::f(g(xx)) = f(2x+4) = (2x+4) = (2x+4) + 2 = 2x+6

    Example 2
    ::例2

    Given the function definition above, g ( x ) = 5 x . Therefore if x = 4, then we have g (4) = 5(4) = 20. What happens if we then take the output of 20 and use it as the input of f ?
    ::根据上文g(x) = 5x 的功能定义,g(x) = 5x。因此,如果 x = 4,那么我们有 g(4) = 5(4) = 20。 如果我们将20 的输出作为 f 的输入,结果会如何?

    Substituting 20 in for x in f ( x ) = 2 x + 3 gives: f (20) = 2(20) + 3 = 43.
    ::在 f(x) = 2x + 3 中 x 的替代值为 20 英寸: f(20) = 2(20) + 3 = 43。

    The table below shows several examples of this same process:
    ::下表列出了同一过程的几个例子:

    x Output from g Output from f
    2 10 23
    3 15 33
    4 20 43
    5 25 53

    Examining the values in the table, we can see a pattern : all of the final output values from f are 3 more than 10 times the initial input. We have created a new function called h ( x ) out of f ( x ) = 2 x + 3 in which g ( x ) = 5 x is the input:
    ::检查表格中的值,我们可以看到一个模式: f 的所有最终输出值是初始输入的10倍以上的3倍以上。我们从 f(x) = 2x + 3中创建了名为 h(x) 的新函数, 其中 g(x) = 5x 的输入为 g(x) = 5x :

    h ( x ) = f (5 x ) = 2(5 x ) + 3 = 10 x + 3
    ::h(x) = f(5x) = 2(5x) = 2(5x) + 3 = 10x + 3

    When we input one function into another, we call this the composition of the two functions. Formally, we write the composed function as f ( g ( x )) = 10 x + 3 or write it as ( f o g ) x = 10 x + 3
    ::当我们将一个函数输入到另一个函数时, 我们将此称为两个函数的构成。 形式上, 我们将组成函数写成 f( g( x) = 10x + 3, 或者写成 (f o( g) x = 10x + 3)

    Example 3
    ::例3

    Find f ( g ( x )) and g ( f ( x )):
    ::查找 f( g( x)) 和 g( f( x) ) :

    1. f (x) = 3 x + 1 and g ( x ) = x 2
      ::f(x) = 3x + 1 和 g(x) = x2

    f ( g ( x )) = f ( x 2 ) = 3( x 2 ) + 1 = 3 x 2 + 1
    ::f(g(xx)) = f(x2) = 3(x2) = 3(x2) + 1 = 3x2 + 1

    g ( f ( x )) = g (3 x + 1) = (3 x + 1) 2 = 9 x 2 + 6 x + 1
    ::g(f(xx)) = g(3x+1) = (3x+1) = (3x+1) = (3x+1) 2 = 9x2 + 6x+ 1

    In both cases, the resulting function is quadratic.
    ::在这两种情况下,由此产生的功能都是二次函数。

    1. f (x) = 2 x + 4 and g ( x ) = (1/2) x - 2
      ::f(x) = 2x + 4 和 g(x) = (1/2) x - 2

    f ( g ( x )) = 2((1/2) x - 2) + 4 = (2/2) x - 4 + 4 = (2/2) x = x
    ::f(g(xx)) = 2(2(1/2)x-2) + 4 = (2/2)x - 4 + 4 + 4 = (2/2)x = x

    g ( f ( x )) = g (2 x + 4) = (1/2)(2 x + 4) - 2 = x + 2 - 2 = x .
    ::g(f(x)) = g(2x+4) = (1/2) (2x+4) - 2 = x+ 2-2= x。

    In this case, the composites were equal to each other, and they both equal x , the original input into the function. This means that there is a special relationship between these two functions. We will examine this relationship in Chapter 3. It is important to note, however, that f ( g ( x ) is not necessarily equal to g ( f ( x )).
    ::在这种情况下,复合体是等同的,它们都等于函数的原始输入的x。这意味着这两种功能之间有特殊的关系。我们将在第3章中审查这种关系。但必须指出,f(g(x)不一定等于g(f(x))。

    Example 4
    ::例4

    Decompose the function f ( x ) = (3 x - 1) 2 - 5 into a quadratic function g ( x ) and a linear function h ( x ).
    ::将函数 f(x) = (3x-1) 2 - 5 分解成四方函数 g(x) 和线性函数 h(x) 。

    When we compose functions, we are combining two (or more) functions by inputting the output of one function into another. We can also decompose a function. Consider the function f ( x ) = (2 x + 1) 2 . We can decompose this function into an “inside” and an “outside” function. For example, we can construct f ( x ) = (2 x + 1) 2 with a linear function and a quadratic function. If g ( x ) = x 2 and h ( x ) = (2 x + 1), then f ( x ) = g ( h ( x )). The linear function h ( x ) = (2 x + 1) is the inside function, and the quadratic function g ( x ) = x 2 is the outside function.
    ::当我们组成函数时, 我们通过将一个函数的输出输入到另一个函数中, 将两个( 或更多) 函数合并。 我们还可以分解一个函数。 将函数 f( x) = 2x + 1 2, 我们可以将这个函数分解成“ 内侧” 和“ 外侧” 函数。 例如, 我们可以构造 f( x) = 2x = 2x = 2x 2 和 h( x) = 2x + 1, 然后 f( x) = g( h) x ) 。 线性函数 h( x) = 2x + 1) 是内部函数, 二次函数 g( x) = x2 是外部函数 。

    Let h ( x ) = 3 x - 1 and g ( x ) = x 2 - 5. Then f ( x ) = g ( h ( x )) because g ( h ( x )) = g (3 x - 1) = (3 x - 1) 2 - 5.
    ::let h(x) = 3x-1 和 g(x) = x2 - 5. 然后f(x) = gheart = gheart x) = g(3x-1) = (3x-1) 2 - 5.

    The decomposition of a function is not necessarily unique. For example, there are many ways that we could express a linear function as the composition of other .
    ::函数的分解不一定是独一无二的。 例如,我们可以以多种方式将线性函数表达为其他函数的构成。

    Example 5
    ::例5

    Given:
    ::参照:

    f ( x ) = 5 x + 3
    :sadxx)=5x+3

    g ( x ) = 3 x 2
    ::g(x)=3x2

    Find: f ( g ( 4 ) )
    ::查找:f(g(4))

    To find f ( g (4)), we need to know what g ( 4 ) is, so we know what to substitute into f ( x ) :
    ::要找到f(g(4)),我们需要知道g(4)是什么, 所以我们知道什么可以替代 f(x) :

    Substitute 4 for x for the function g ( x ), giving: 3 4 2
    ::函数 g(x) 的 x 替代 4 , 给: 342

    Simplify: 3 16 = 48
    ::简化: 316=48

    g ( 4 ) = 48
    ::*g(4)=48

    Substitute 48 for the x in the function f ( x ) giving: 5 ( 48 ) + 3
    ::函数 f( x) 给付: 5( 48)+3 中 x x 的替代值为 48

    Simplify: 240 + 3 = 243
    ::简化: 240+3=243

    f ( g ( 4 ) ) = 243
    ::f(g(4))=243

    Example 6
    ::例6

    Given:
    ::参照:

    %20%3D%207n%20%2B1%20%2B%204(gNo)"> h ( n ) = 7 n + 1 + 4 ( g ( n ) )
    ::hNo=7n+1+4(gNo)

    g ( t ) = t
    :sadgt)____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    f ( x ) = 2 x + g ( x )
    :sadxx)%%2x+g(x)

    Find: f ( h ( 5 ) )
    ::查找:f(h(-5))

    First, let's solve for the value of the inner function, h ( 5 ) . Then we'll know what to plug into the outer function.
    ::首先,让我们解决内部函数, h(- 5) 的值, 然后我们就会知道在外函数中插入什么 。

    h ( 5 ) = ( 7 ) ( 5 ) + 1 + 4 ( g ( 5 ) )
    ::h(-5)=(7)(-5)+1+4(g(-5))

    To solve for the value of h , we need to solve g ( 5 )
    ::要解决 h 值, 我们需要解决 g( - 5) 。

    g ( 5 ) = ( 5 )
    ::g(-5) (-5)

    g ( 5 ) = 5
    ::*g(-5)=5

    Now we have: h ( 5 ) = ( 7 ) ( 5 ) + 1 + ( 4 ) ( 5 )
    ::现在我们有:h(-5)=(7)(-5)+1+(4)(5)

    Simplify to get: h ( 5 ) = 14
    ::简化以获得: h(- 5) @% 14

    Now we know that h ( 5 ) = 14 . That tells us that f ( h ( 5 ) ) is f ( 14 )
    ::也就是说f(h(-5))是f(-14)

    Find f ( 14 ) = ( 2 ) ( 14 ) + g ( 14 )
    ::查找 f( - 14) = (-2)( - 14)+g( - 14)

    So to solve for the value of f ( 14 ) , we need to solve for the value of g ( 14 )
    ::因此,要解决f(-14)的值,我们需要解决g(-14)的值

    g ( 14 ) = ( 14 )
    ::g(-14) (-14)

    g ( 14 ) = 14
    ::*g(-14)=14

    Now we can finish up!
    ::现在我们可以完成!

    f ( 14 ) = ( 2 ) ( 14 ) + 14
    ::f(-14)=(-2)(-14)+14

    f ( 14 ) = 42
    ::f( - 14) = 42

    Review
    ::回顾

    For problems 1-4:
    ::对于问题1-4:

    f ( x ) = 2 x 1 g ( x ) = 3 x h ( x ) = x 2 + 1
    :sadx)=2x-1g(x)=3xh(x)=x2+1

    1. Find: f ( g ( 3 ) )
      ::查找: f( g( - 3) )
    2. Find: f ( h ( 7 ) )
      ::查找:f(h(7))
    3. Find: h ( g ( 4 ) )
      ::查找:h(g(- 4))
    4. Find: f ( g ( h ( 2 ) ) )
      ::查找:f(g(h(2)))

    Evaluate each composition below:
    ::评估以下每一组成:

    1. Given: f ( x ) = 5 x + 2 and g ( x ) = 1 2 x + 4 . Find f ( g ( 12 ) ) .
      ::给定 : f( x) =% 5x+2 和 g( x) = 12x+4。 查找 f( g( 12) ) 。
    2. Given: g ( x ) = 3 x + 6 and h ( x ) = 9 x + 3 . Find g ( h ( 1 3 ) ) .
      ::给定 : g( x) % 3x+6 和 h( x) = 9x+3. 查找 g( h) (13) 。
    3. Given: f ( x ) = 1 5 x + 4 and g ( x ) = 4 x 2 . Find f ( g ( 10 ) ) .
      ::给定 : f( x) 15x+4 和 g( x) = 4x2. 查找 f( g(10) ) 。
    4. Given g ( x ) = 3 | x 4 | + 6 and h ( x ) = x 3 . Find h ( g ( 4 ) ) .
      ::g( x) = 3x-46 和 h( x) x3. 查找 h( g(4) ) 。
    5. Given f ( x ) = x + 2 and g ( x ) = | 2 x | . Find g ( f ( 7 ) ) .
      ::给定 f( x) =x+2 和 g( x)\\\\\\\\\\\\\\\\\ 查找 g( f( f) - 7) 。
    6. Given f ( x ) = 3 x + 2 and given g ( x ) = 2 x 2 and given h ( x ) = 4 | 7 x | + 6 . Find f ( g ( h ( 1 ) ) ) .
      ::给定 f( x) =% 3x+2, 给定 g( x) = 2x2, 给定 h( x) = 4 @ @ 7- x# 查找 f( g( h(1) ) ) 。
    7. Given f ( x ) = ( 3 ) and given g ( x ) = 2 x and given h ( x ) = | 4 x | 12 . Find f ( h ( g ( 18 ) ) ) .
      ::给定 f( x) = (-3) , 给定 g( x) = 2x , 给定 h( x) = 4x = 12。 查找 f( h) ( g( 18) ) 。
    8. Are compositions commutative? In other words, does f ( g ( x ) ) = g ( f ( x ) ) ?
      ::构成是否具有通融性?换句话说,f(g(x))=g(f(x))?
    9. Given: f ( x ) = 2 2 5 x and h ( x ) = 3 x + 2 . Find f ( h ( x ) ) .
      ::给定: f( x)\\% 22- 5x 和 h( x) = 3x+2. 查找 f( h( x) ) 。
    10. Two functions are inverses of each other if f ( g ( x ) ) = x and g ( f ( x ) ) = x If f ( x ) = x + 3 , find its inverse: g ( x )
      ::如果 f( g( x)) =x 和 g( f( f( x) ) =x 如果 f( x) =x+3 发现其反义 : g( x)
    11. A toy manufacturer has a new product to sell. The number of units to be sold, n , is a function of the price p such that: n ( p ) = 30 25 p . The revenue r earned from the sales is a function of the number of units sold n such that: %20%3D%201000%20-%20%5Cfrac%7B1%7D%7B4%7Dn%5E2"> r ( n ) = 1000 1 4 n 2 . Find the function for revenue in terms of price, p .
      ::玩具制造商有一个新的产品要出售。要出售的单位数目 n 取决于价格p, 即:n(p)=30-25p。销售所得的收入是售出的单位数目的函数,即:rNo=1000-1400-1400n2。从价格上确定收入的函数,p。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。