Section outline

  • Mrs. Garcia has assigned her student the function y = x + 2 3 to graph for homework. The next day, she asks her students which quadrant(s) their graph is in.
    ::Garcia夫人指派她的学生用yx+2-3功能来图表做家庭作业,第二天,她问她的学生他们的图表在哪个象限里。

    Alendro says that because it is a square root function , it can only have positive values and therefore his graph is only in the first quadrant .
    ::Alendro说,因为它是一个平方根函数,它只能有正值,因此他的图表只在第一个象限内。

    Dako says that because of the two negative sign, all y values will be positive and therefore his graph is in the first and second quadrants .
    ::Dako说,由于两个负的信号,y的所有值都将是正值,因此他的图表在第一和第二四位数中。

    Marisha says they are both wrong. Because it is a negative square root function, her graph is in the third and fourth quadrants.
    ::Marisha说两者都是错的。 因为这是一个负平方根函数, 她的图表在第三和第四个四分位数中。

    Which one of them is correct?
    ::哪一个是正确的?

    Graphing Square Root Functions
    ::图形平方根函数

    A square root function has the form y = a x h + k , where y = x is the parent graph . Graphing the parent graph, we have:
    ::平方根函数有 y=ax-h+k 的窗体, Y=x 是母图。

    x y
    16 4
    9 3
    4 2
    1 1
    0 0
    -1 und

    lesson content

    Notice that this shape is half of a parabola , lying on its side. For y = x , the output is the same as the input of y = x 2 . The domain and range of y = x are all positive real numbers, including zero. x cannot be negative because you cannot take the square root of a negative number.
    ::请注意, 此形状是 parbola 的 半 。 对于 y=x , 输出与 y=x 的输入相同 。 y=x 的域和范围都是正数, 包括 0。 x 不能是负数, 因为不能从负数的平方根中取出正数 。

    Let's graph y = x 2 + 5 without a calculator.
    ::让我们用图y=x-2+5来显示无计算器的 y=x-2+5 。

    To graph this function, draw a table. x = 2 is a critical value because it makes the radical zero.
    ::要绘制此函数,请绘制表格。 x=2 是一个关键值,因为它使基数为零。

    x y
    2 5
    3 6
    6 7
    11 8

    lesson content

    After plotting the points, we see that the shape is exactly the same as the parent graph. It is just shifted up 5 and to the right 2. Therefore, we can conclude that h is the horizontal shift and k is the vertical shift .
    ::在绘制了点后, 我们可以看到形状与父图完全相同。 它只是向上移了 5 和向右移了 2 。 因此, 我们可以得出结论, h 是水平转换, k 是垂直转换 。

    The domain is all real numbers such that x 2 and the range is all real numbers such that y 5 .
    ::域名是所有真实数字, 即 x% 2, 范围是所有真实数字, 即 y% 5 。

    Now's let's graph y = 3 x + 1  and find the domain and range.
    ::现在让我们来绘制 y=3x+1 并找到域和范围 。

    From the previous problem , we already know that there is going to be a horizontal shift to the left one unit. The 3 in front of the radical changes the width of the function. Let’s make a table.
    ::从上一个问题开始,我们已经知道左侧的单位会横向移动。 3 前面的3 改变函数的宽度。 让我们来做一张表格。

    x y
    1 0
    0 3
    3 6
    8 9
    15 12

    lesson content

    Notice that this graph grows much faster than the parent graph. Extracting ( h , k ) from the equation , the starting point is ( 1 , 0 ) and then rather than increase at a “slope” of 1, it is three times larger than that.
    ::请注意, 此图的生长速度比父图快得多。 从方程式中提取( h, k) 时, 起始点是 (- 1, 0) , 而不是在 1 的“ 斜面” 上增加, 它比该方程式大三倍 。

    Finally, let's graph f ( x ) = x 2 + 3 .
    ::最后,让我们用图表f(x)x-2+3。

    Extracting ( h , k ) from the equation, we find that the starting point is ( 2 , 3 ) . The negative sign in front of the radical indicates a reflection . Let’s make a table. Because the starting point is ( 2 , 3 ) , we should only pick x -values after x = 2 .
    ::从方程中提取 (h,k) 时, 我们发现起点是(2, 3) 。 激进分子前面的负符号表示反射。 让我们来做一张表。 因为起点是(2, 3 ) , 我们只能在 x=2 之后选择 x 值 。

    x y
    2 3
    3 2
    6 1
    11 0
    18 -1

    lesson content

    The negative sign in front of the radical, we now see, results in a reflection over x -axis.
    ::现在我们看到,激进分子面前的负面迹象导致X轴反射。

    Using the graphing calculator: If you wanted to graph this function using the TI-83 or 84, press Y = and clear out any functions. Then, press the negative sign, (-) and 2nd x 2 , which is . Then, type in the rest of the function, so that Y = ( X 2 ) + 3 . Press GRAPH and adjust the window.
    ::使用图形计算器 : 如果您想要使用 TI- 83 或 84 来图形显示此函数, 请按 Y = 并清除任何函数 。 然后按负符号 (-) 和 2ndx2 , 即 。 然后键入此函数的其余部分, 以便 Y (X-2) +3. 按 GRAPH 键并调整窗口 。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to determine which student was correct.  
    ::早些时候,有人要求你确定哪个学生是正确的。

    If you graph the function y = x + 2 3 , you will see that its domain is x 2 , which makes all of the quadrants possibilities. But its range is y 3 , limiting the graph to the third and fourth quadrants. Therefore, Marisha is correct.
    ::如果您将函数 yx+2- 3 图形, 您就会看到它的域是 x2, 这使得所有四重体都有可能。 但范围是 y3 , 将图限制在第三和第四 夸体。 因此, Marisha 是正确的 。

    Example 2
    ::例2

    Evaluate y = 2 x 5 + 8 when x = 9 .
    ::当 x=9 时评价 y2x- 5+8 。

    Plug in x = 9 into the equation and solve for y .
    ::将 x=9 中的插件插在公式和y 的解析中。

    y = 2 9 5 + 8 = 2 4 + 8 = 2 ( 2 ) + 8 = 4 + 8 = 4
    ::y 29 - 5+8 _ 24+8 _ 2 (2)+8 _ 4+8 _ 4

    Example 3
    ::例3

    Graph, describe the relationship to the parent graph and find the domain and range: y = x .
    ::图表,描述与父图形的关系,并查找域和范围:yx。

    Here, the negative is under the radical. This graph is a reflection of the parent graph over the y -axis.
    ::这里的负值在基下。 这个图是 Y 轴上的母图的反射 。

    The domain is all real numbers less than or equal to zero. The range is all real numbers greater than or equal to zero.
    ::域名是所有实际数字小于或等于零。范围是所有实际数字大于或等于零。

    lesson content

    Example 4
    ::例4

    Graph, describe the relationship to the parent graph and find the domain and range: f ( x ) = 1 2 x + 3 .
    ::图表,描述与父图形的关系,并查找域和范围:f(x)=12x+3。

    The starting point of this function is ( 3 , 0 ) and it is going to “grow” half as fast as the parent graph.
    ::此函数的起点是 (- 3,0) , 它的“ 增长” 速度会快于母图的一半 。

    The domain is all real numbers greater than or equal to -3. The range is all real numbers greater than or equal to zero.
    ::域是所有实际数字大于或等于-3.。 范围是所有实际数字大于或等于0。

    Example 5
    ::例5

    Graph using a graphing calculator f ( x ) = 4 x 5 + 1 .
    ::使用图形计算器 f( x)\\% 4x- 5+1 的图形图。

    Using the graphing calculator, the function should be typed in as: Y = 4 ( X 5 ) + 1 . It will be a reflection over the x -axis, have a starting point of ( 5 , 1 ) and grow four times as fast as the parent graph.
    ::使用图形计算计算器,函数应输入为:Y4(X-5)+1。它将是X轴的反射,起点为(5,1),生长速度为父图形的四倍。

    Review
    ::回顾

    Evaluate the function, f ( x ) = x 4 + 3 for the following values of x .
    ::对以下 x 值的 f(x) x-4+3 函数进行评价。

    1. f ( 3 )
      ::f(3) f(3)
    2. f ( 6 )
      ::f(6) f(6)
    3. f ( 13 )
      ::f(13)
    4. What is the domain of this function?
      ::此函数的域是什么 ?

    Graph the following square root functions and find the domain and range. Use your calculator to check your answers.
    ::绘制以下平方根函数图并找到域和范围。使用您的计算器来检查答案。

    1. f ( x ) = x + 2
      :sadxx)=x+2
    2. y = x 5 2
      ::y=x - 5-2
    3. y = 2 x + 1
      ::y2x+1
    4. f ( x ) = 1 + x 3
      :sadxx)=1+x-3)
    5. f ( x ) = 1 2 x + 8
      :sadxx)=12x+8
    6. f ( x ) = 3 x + 6
      :sadxx)=3x+6)
    7. y = 2 1 x
      ::y=21-x y=21-x
    8. y = x + 3 5
      ::y=x+3 - 5 y=x+3 - 5
    9. f ( x ) = 4 x + 9 8
      :sadxx)=4x+9-8
    10. y = 3 2 x 3 + 6
      ::y32x-3+6
    11. y = 3 5 x + 7
      ::y35 - x+7 y35 - x+7
    12. f ( x ) = 2 3 x 9
      :sadxx)=23-x-9)

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。