Section outline

  • Mrs. Garcia assigns her student the cube root function y = ( x + 1 ) 3 to graph for homework. The following day, she asks her students which quadrant(s) their graph is in.
    ::Garcia夫人指派她的学生用立方根函数 y(x+1) 3 来图表做家庭作业。第二天,她询问她的学生他们的象限在哪个(s) 。

    Alendro says that because of the negative sign, all y values are negative. Therefore his graph is only in the third and fourth quadrants quadrant .
    ::阿伦德罗说,由于负符号,所有y值都是负值。因此他的图表只在第三和第四四象限中。

    Dako says that his graph is in the third and fourth quadrants as well but it is also in the second quadrant.
    ::Dako说,他的图表在第三和第四四象限中,但也在第二象限中。

    Marisha says they are both wrong and that her graph of the function is in all four quadrants.
    ::Marisha说两者都是错的 她的函数图是四个四分位数

    Which one of them is correct?
    ::哪一个是正确的?

    Graphing Cubed Root Functions
    ::图形构造根函数

    A cubed root function is different from that of a square root . Their general forms look very similar, y = a x h 3 + k and the parent graph is y = x 3 . However, we can take the cubed root of a negative number, therefore, it will be defined for all values of x . Graphing the parent graph, we have:
    ::立方根函数与平方根函数不同。 其一般形式看起来非常相似, y=ax- h3+k, 母图是 y=x3。 然而, 我们可以选取负数的立方根, 因此, 它将被定义为 x 的所有值 。 绘制母图时, 我们有 :

    lesson content

    x y
    -27 -3
    -8 -2
    -1 -1
    0 0
    1 1
    8 2
    27 3

    For y = x 3 , the output is the same as the input of y = x 3 . The domain and range of y = x 3 are all real numbers. Notice there is no “starting point” like the square root functions, the ( h , k ) now refers to the point where the function bends, called a point of inflection .
    ::对于 y=x3, 输出与 y=x3 输入相同。 y=x3 的域和范围都是真实数字。 注意没有像 平方根 函数那样的“ 起始点 ” , (h, k) 现在指函数弯曲的点, 称为偏移点 。

    Let's describe how to obtain the graph of y = x 3 + 5 from y = x 3 .
    ::让我们描述如何从 y=x3+5 从 y=x3 获取 y=x3+5 的图形 。

    lesson content

    W e know that the +5 indicates a vertical shift of 5 units up. Therefore, this graph will look exactly the same as the parent graph, shifted up five units.
    ::我们知道, +5 表示向上垂直移动 5 个单位。 因此, 此图将看起来和 父图完全一样, 向上移动了 5 个单位 。

    Now, let's graph f ( x ) = x + 2 3 3  and find the domain and range.
    ::现在,让我们来图f(x)x+23-3 并找到域和范围。

    lesson content

    From the previous problem , we know that from the parent graph, this function is going to shift to the left two units and down three units. The negative sign will result in a reflection .
    ::从上一个问题中,我们知道,从父图中,此函数将移到左两个单位,向下三个单位。负信号将导致反射。

    Alternate Method: If you want to use a table, that will also work. Here is a table, then plot the points. ( h , k ) should always be the middle point in your table.
    ::替代方法 : 如果您想要使用表格, 这也会有效 。 这是一张表格, 然后绘制点数 。 (h, k) 应该始终是表格的中点 。

    x y
    6 -5
    -1 -4
    -2 -3
    -3 -2
    -10 -1

    Finally, let's graph f ( x ) = 1 2 x 4 3 .
    ::最后,让我们用图表f(x)=12x-43。

    The -4 tells us that, from the parent graph, the function will shift to the right four units. The 1 2 effects how quickly the function will “grow”. Because it is less than one, it will grow slower than the parent graph.
    ::-4 告诉我们,从父图中,函数将转移到右四个单位。12 效果是函数“增长”的速度有多快。由于它小于一个,其增长速度将比父图慢。

    Using the graphing calculator: If you wanted to graph this function using the TI-83 or 84, press Y = and clear out any functions. Then, press ( 1 ÷ 2 ) , MATH and scroll down to 4 : 3 and press ENTER . Then, type in the rest of the function, so that Y = ( 1 2 ) 3 ( X 4 ) . Press GRAPH and adjust the window.
    ::使用图形计算器 : 如果您想要使用 TI- 83 或 84 来显示此函数, 请按 Y = 并清除任何函数 。 然后按 (1\\ 2) 、 MATH 并滚动到 4: 3 并按 ENTER 键。 然后键入此函数的其余部分, 以便 Y= (123) (X- 4) 按 GRAPH 并调整窗口 。

    Important Note: The domain and range of all cubed root functions are both all real numbers.
    ::重要注意: 所有立方根函数的域和范围都是真实数字。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to determine which student was correct. 
    ::早些时候,有人要求你确定哪个学生是正确的。

    If you graph the function y = ( x + 1 ) 3 , you see that the domain is all real numbers, which makes all quadrants possible. However, for all positive values of x , y is negative because of the negative sign in front of the cube root. That rules out the first quadrant. Therefore, Dako is correct.
    ::如果您图形显示 y( x+1) 3 函数, 您就会看到域是所有真实数字, 这使得所有四分位数成为可能。 但是, 对于 x 的所有正值来说, y 是负的, 因为立方根前面有负的符号。 这排除了第一个象限 。 因此, Dako 是正确的 。

    Example 2
    ::例2

    Evaluate y = x + 4 3 11 when x = 12 .
    ::在 x12 时评价 y=x+43- 11。

    Plug in x = 12 and solve for y .
    ::插入 x12 并解决 y 。

    y = 12 + 4 3 11 = 8 3 + 4 = 2 + 4 = 2
    ::y12+43-1183+42+4=2

    Example 3
    ::例3

    Describe how to obtain the graph of y = x + 4 3 11 from y = x 3 .
    ::描述如何从 y=x+43- 11 从 y=x3 获取 y=x+43- 11 的图形 。

    Starting with y = x 3 , you would obtain y = x + 4 3 11 by shifting the function to the left four units and down 11 units.
    ::从 y=x3 开始,您可以通过将函数向左四个单位和向下11 个单位移动来获取 Y=x+43- 11 。

    Graph the following cubed root functions. Check your graphs on the graphing calculator.
    ::绘制下面的立方根函数。请检查图形计算器上的图表。

    Example 4
    ::例4

    y = x 2 3 4
    ::y=x - 23 - 4

     This function is a horizontal shift to the right two units and down four units.
    ::此函数是向右两个单位和向下四个单位的横向移动。

    lesson content

    Example 5
    ::例5

      f ( x ) = 3 x 1
    :sadxx)%%3x- 1)

    This function is a reflection of y = x 3 and stretched to be three times as large. Lastly, it is shifted down one unit.
    ::此函数是 y=x3 的反射, 伸展为 y=x3 的三倍。 最后, 它会向下移动一个单位 。

    lesson content

    Review
    ::回顾

    Evaluate f ( x ) = 2 x 1 3 for the following values of x .
    ::下列x的数值评价 f(x)=2x-13。

    1. f ( 14 )
      ::f(14) f(14)
    2. f ( 62 )
      ::f( - 62)
    3. f ( 20 )
      ::f( 20)

    Graph the following cubed root functions. Use your calculator to check your answers.
    ::绘制下面的立方根函数。使用您的计算器检查答案。

    1. y = x 3 + 4
      ::y=x3+4 y=x3+4
    2. y = x 3 3
      ::y=x-33 y=x - 33
    3. f ( x ) = x + 2 3 1
      :sadxx)=x+23-1
    4. g ( x ) = x 3 6
      ::g(x) x3-6
    5. f ( x ) = 2 x + 1 3
      :sadxx)=2x+13
    6. h ( x ) = 3 x 3 + 5
      ::h(x) 3x3+5
    7. y = 1 2 1 x 3
      ::y=121-x3 y= 121-x3
    8. y = 2 x + 4 3 3
      ::y=2x+43-3
    9. y = 1 3 x 5 3 + 2
      ::y13x-53+2
    10. g ( x ) = 6 x 3 + 7
      ::g(x)=6-x3+7
    11. f ( x ) = 5 x 1 3 + 3
      :sadxx) 5x-13+3
    12. y = 4 7 x 3 8
      ::y=47-x3-8

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。