7.5 图形构造根函数
Section outline
-
Mrs. Garcia assigns her student the cube root function to graph for homework. The following day, she asks her students which quadrant(s) their graph is in.
::Garcia夫人指派她的学生用立方根函数 y(x+1) 3 来图表做家庭作业。第二天,她询问她的学生他们的象限在哪个(s) 。Alendro says that because of the negative sign, all y values are negative. Therefore his graph is only in the third and fourth quadrants quadrant .
::阿伦德罗说,由于负符号,所有y值都是负值。因此他的图表只在第三和第四四象限中。Dako says that his graph is in the third and fourth quadrants as well but it is also in the second quadrant.
::Dako说,他的图表在第三和第四四象限中,但也在第二象限中。Marisha says they are both wrong and that her graph of the function is in all four quadrants.
::Marisha说两者都是错的 她的函数图是四个四分位数Which one of them is correct?
::哪一个是正确的?Graphing Cubed Root Functions
::图形构造根函数A cubed root function is different from that of a square root . Their general forms look very similar, and the parent graph is . However, we can take the cubed root of a negative number, therefore, it will be defined for all values of . Graphing the parent graph, we have:
::立方根函数与平方根函数不同。 其一般形式看起来非常相似, y=ax- h3+k, 母图是 y=x3。 然而, 我们可以选取负数的立方根, 因此, 它将被定义为 x 的所有值 。 绘制母图时, 我们有 :x y -27 -3 -8 -2 -1 -1 0 0 1 1 8 2 27 3 For , the output is the same as the input of . The domain and range of are all real numbers. Notice there is no “starting point” like the square root functions, the now refers to the point where the function bends, called a point of inflection .
::对于 y=x3, 输出与 y=x3 输入相同。 y=x3 的域和范围都是真实数字。 注意没有像 平方根 函数那样的“ 起始点 ” , (h, k) 现在指函数弯曲的点, 称为偏移点 。Let's describe how to obtain the graph of from .
::让我们描述如何从 y=x3+5 从 y=x3 获取 y=x3+5 的图形 。W e know that the +5 indicates a vertical shift of 5 units up. Therefore, this graph will look exactly the same as the parent graph, shifted up five units.
::我们知道, +5 表示向上垂直移动 5 个单位。 因此, 此图将看起来和 父图完全一样, 向上移动了 5 个单位 。Now, let's graph and find the domain and range.
::现在,让我们来图f(x)x+23-3 并找到域和范围。From the previous problem , we know that from the parent graph, this function is going to shift to the left two units and down three units. The negative sign will result in a reflection .
::从上一个问题中,我们知道,从父图中,此函数将移到左两个单位,向下三个单位。负信号将导致反射。Alternate Method: If you want to use a table, that will also work. Here is a table, then plot the points. should always be the middle point in your table.
::替代方法 : 如果您想要使用表格, 这也会有效 。 这是一张表格, 然后绘制点数 。 (h, k) 应该始终是表格的中点 。x y 6 -5 -1 -4 -2 -3 -3 -2 -10 -1 Finally, let's graph .
::最后,让我们用图表f(x)=12x-43。The -4 tells us that, from the parent graph, the function will shift to the right four units. The effects how quickly the function will “grow”. Because it is less than one, it will grow slower than the parent graph.
::-4 告诉我们,从父图中,函数将转移到右四个单位。12 效果是函数“增长”的速度有多快。由于它小于一个,其增长速度将比父图慢。Using the graphing calculator: If you wanted to graph this function using the TI-83 or 84, press and clear out any functions. Then, press , MATH and scroll down to 4 : and press ENTER . Then, type in the rest of the function, so that . Press GRAPH and adjust the window.
::使用图形计算器 : 如果您想要使用 TI- 83 或 84 来显示此函数, 请按 Y = 并清除任何函数 。 然后按 (1\\ 2) 、 MATH 并滚动到 4: 3 并按 ENTER 键。 然后键入此函数的其余部分, 以便 Y= (123) (X- 4) 按 GRAPH 并调整窗口 。Important Note: The domain and range of all cubed root functions are both all real numbers.
::重要注意: 所有立方根函数的域和范围都是真实数字。Examples
::实例Example 1
::例1Earlier, you were asked to determine which student was correct.
::早些时候,有人要求你确定哪个学生是正确的。If you graph the function , you see that the domain is all real numbers, which makes all quadrants possible. However, for all positive values of x , y is negative because of the negative sign in front of the cube root. That rules out the first quadrant. Therefore, Dako is correct.
::如果您图形显示 y( x+1) 3 函数, 您就会看到域是所有真实数字, 这使得所有四分位数成为可能。 但是, 对于 x 的所有正值来说, y 是负的, 因为立方根前面有负的符号。 这排除了第一个象限 。 因此, Dako 是正确的 。Example 2
::例2Evaluate when .
::在 x12 时评价 y=x+43- 11。Plug in and solve for .
::插入 x12 并解决 y 。
::y12+43-1183+42+4=2Example 3
::例3Describe how to obtain the graph of from .
::描述如何从 y=x+43- 11 从 y=x3 获取 y=x+43- 11 的图形 。Starting with , you would obtain by shifting the function to the left four units and down 11 units.
::从 y=x3 开始,您可以通过将函数向左四个单位和向下11 个单位移动来获取 Y=x+43- 11 。Graph the following cubed root functions. Check your graphs on the graphing calculator.
::绘制下面的立方根函数。请检查图形计算器上的图表。Example 4
::例4
::y=x - 23 - 4This function is a horizontal shift to the right two units and down four units.
::此函数是向右两个单位和向下四个单位的横向移动。Example 5
::例5
:xx)%%3x- 1)
This function is a reflection of and stretched to be three times as large. Lastly, it is shifted down one unit.
::此函数是 y=x3 的反射, 伸展为 y=x3 的三倍。 最后, 它会向下移动一个单位 。Review
::回顾Evaluate for the following values of x .
::下列x的数值评价 f(x)=2x-13。-
::f(14) f(14) -
::f( - 62) -
::f( 20)
Graph the following cubed root functions. Use your calculator to check your answers.
::绘制下面的立方根函数。使用您的计算器检查答案。-
::y=x3+4 y=x3+4 -
::y=x-33 y=x - 33 -
:xx)=x+23-1
-
::g(x) x3-6 -
:xx)=2x+13
-
::h(x) 3x3+5 -
::y=121-x3 y= 121-x3 -
::y=2x+43-3 -
::y13x-53+2 -
::g(x)=6-x3+7 -
:xx) 5x-13+3
-
::y=47-x3-8
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -