Section outline

  • The graph of a cubic function starts at the point (2, 2). It passes through the point (10, -2). What is the equation of the function?
    ::立方函数的图形从点开始( 2, 2) 。 它通过点( 10, - 2) 。 该函数的方程式是什么 ?

    Extracting the Equation from a Graph
    ::从图表中提取公式

    In this concept, instead of graphing from the equation, we will now find the equation when we are given the graph.
    ::在这个概念中,我们不是用方程式绘制图表,而是用方程式绘制图表,现在,当我们得到图表时,我们就会找到方程式。

    Let's determine the equation of the graph below.
    ::我们来决定下方图的方程式

    We know this is a square root function , so the general form is y = a x h + k . The starting point is ( 6 , 1 ) . Plugging this in for h and k , we have y = a x + 6 + 1 . Now, find a , using the given point, ( 2 , 5 ) . Let’s substitute it in for x and y and solve for a .
    ::我们知道这是一个平方根函数, 所以一般的形式是 y=ax- h+k。 起始点是 (- 6, 1) 。 开始点是 (- 6, 1) 。 将它插入 h和 k, 我们有 y=ax+6+1 。 现在, 使用给定点找到一个 (- 2, 5) 。 让我们用 x 和 y 来替换它, 然后解决一个 。

    5 = a 2 + 6 + 1 4 = a 4 4 = 2 a 2 = a

    ::5=a-2+6+14=a44=2a2=a2=a

    The equation is y = 2 x + 6 + 1 .
    ::方程式是 y= 2x+6+1 。

    Now, let's find the equation of the cubed root function where h = 1 and k = 4 and passes through ( 28 , 3 ) .
    ::现在,让我们找到立方根函数的方程式, 位置是 h1 和 k4, 然后通过 (- 28, - 3) 。

    First, plug in what we know to the general equation; y = x h 3 + k y = a x + 1 3 4 . Now, substitute x = 28 and y = 3 and solve for a .
    ::首先,插入我们所知道的一般方程; y=x- h3+ky=ax+13-4。 现在, 替换 x28 和 y3, 并解决 a 。

    3 = a 28 + 1 3 4 1 = 3 a 1 3 = a

    ::- 3=a-28+13-41*3a-13=a

    The equation of the function is y = 1 3 x + 1 3 4 .
    ::函数的方程式是 y13x+13-4。

    Finally, let's find the equation of the function below.
    ::最后,让我们来看看以下函数的等式。

    It looks like ( 0 , 4 ) is ( h , k ) . Plug this in for h and k and then use the second point to find a .
    ::看起来(0, - 4) 是 (h, k.) 。 插插在 h 和 k 之间, 然后用第二点来找到一个 。

    6 = a 1 0 3 4 2 = a 1 3 2 = a

    ::- 6=a1-03-4-2=a13-2=a

    The equation of this function is y = 2 x 3 4 .
    ::此函数的等式为 y2x3-4。

    When finding the equation of a cubed root function, you may assume that one of the given points is ( h , k ) . Whichever point is on the “bend” is ( h , k ) for the purposes of this text.
    ::当查找立方根函数的方程式时, 您可以假设给定的点之一是 (h, k) 。 无论哪个点位于“ 端点” 上, 就本文本而言, 哪一个点是 (h, k) 。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find  the equation of the function. 
    ::早些时候,有人要求你找到函数的方程式。

    First, plug in what we know to the general equation; y = x h 3 + k y = a x 2 3 + 2 . Now, substitute x = 10 and y = 2 and solve for a .
    ::首先,插入我们所知道的一般方程式;y=x-h3+ky=ax-23+2。 现在, 替换 x=10 和 y2, 并解决 a 。

    2 = a 10 2 3 + 2 2 = a 8 3 + 2 2 = 2 a + 2 4 = 2 a a = 2

    ::-2=a10-23+2-2=a83+2-2=2a+2-4=2aa=2aa=2aa2

    The equation of the function is y = 2 x 2 3 + 2 .
    ::函数的方程式是 y2x-23+2。

    Example 2
    ::例2

    Find the equation of the following function.
    ::查找以下函数的方程式。

    Substitute what you know into the general equation to solve for a . From the final practice problem above, you may assume that ( 5 , 8 ) is ( h , k ) and ( 3 , 7 ) is ( x , y ) .
    ::以您所知道的egg 代替一般方程 。 从以上最后练习问题, 您可以假设 (5, 8) (h, k) 和 (- 3, 7) (x,y) (x,y) 。

    y = a x 5 3 + 8 7 = a 3 5 3 + 8 1 = 2 a 1 2 = a

    ::y=x-53+87=a-3-53+8-1=2a12=a

    The equation of this function is y = 1 2 x 5 3 + 8 .
    ::此函数的方程式是 Y=12x-53+8。

    Example 3
    ::例3

    Find the equation of the following function.
    ::查找以下函数的方程式。

     Substitute what you know into the general equation to solve for a . From the graph, the starting point, or ( h , k ) is ( 4 , 11 ) and ( 13 , 1 ) are a point on the graph.
    ::将您所知道的替换为要解答的普通方程式。 从图形中, 起始点或( h, k) 是 (4, - 11) 和 (13, 1) 是图上的一个点 。

    y = a x 4 11 1 = a 13 4 11 12 = 3 a 4 = a

    ::y=ax - 4 - 111=a13 - 4 - 1112=3a4=a

    The equation of this function is y = 4 x 4 11 .
    ::此函数的等式为y=4x-4-11。

    Example 4
    ::例4

    Find the equation of a square root equation with a starting point of ( 5 , 3 ) and passes through ( 4 , 6 ) .
    ::查找平方根方程式的方程式,起点为(-5、-3)和通过(4、-6)。

    Substitute what you know into the general equation to solve for a . From the graph, the starting point, or ( h , k ) is ( 5 , 3 ) and ( 4 , 6 ) are a point on the graph.
    ::将您所知道的替换为要解答的普通方程。 从图形中,起点或(h,k)是(-5,-3)和(4,-6)是图形上的点。

    y = a x + 5 3 6 = a 4 + 5 3 3 = 3 a 1 = a

    ::y= 轴+5 - 3 - 6= a4+5 - 3 - 3= 3a - 1=a

    The equation of this function is y = x + 5 3 .
    ::此函数的方程式是 yx+5-3。

    Review
    ::回顾

    Write the equation for each function graphed below.
    ::写下以下图表的每个函数的方程式 。

    1. lesson content
    2. lesson content
    3. lesson content
    4. lesson content
    5. Write the equation of a square root function with starting point ( 6 , 3 ) passing through ( 10 , 15 ) .
      ::写入平方根函数的方程式,起点(-6-3)通过(10,-15)。
    6. Write the equation of a cube root function with ( h , k ) = ( 2 , 7 ) passing through ( 10 , 11 ) .
      ::写入立方根函数的方程式(h,k)=(2,7)通过(10,11)的方程式。
    7. Write the equation of a square root function with starting point ( 1 , 6 ) passing through ( 3 , 16 ) .
      ::写入平方根函数的方程式,其起点(-1,6)通过(3,16)。
    8. Write the equation of a cubed root function with ( h , k ) = ( 1 , 6 ) passing through ( 7 , 16 ) .
      ::以 (h,k) =(-1,6) 通过 (7,16) 写入立方根函数的方程式。
    9. Write the equation of a cubed root function with ( h , k ) = ( 7 , 16 ) passing through ( 1 , 6 ) .
      ::以 (h,k) =(7,16) 通过 (-1,6) 写入立方根函数的方程式。
    10. How do the two equations above differ? How are they the same?
      ::上述两个方程式有何不同?它们如何相同?

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。