7.6 从图表中提取公式
Section outline
-
The graph of a cubic function starts at the point (2, 2). It passes through the point (10, -2). What is the equation of the function?
::立方函数的图形从点开始( 2, 2) 。 它通过点( 10, - 2) 。 该函数的方程式是什么 ?Extracting the Equation from a Graph
::从图表中提取公式In this concept, instead of graphing from the equation, we will now find the equation when we are given the graph.
::在这个概念中,我们不是用方程式绘制图表,而是用方程式绘制图表,现在,当我们得到图表时,我们就会找到方程式。Let's determine the equation of the graph below.
::我们来决定下方图的方程式We know this is a square root function , so the general form is . The starting point is . Plugging this in for and , we have . Now, find , using the given point, . Let’s substitute it in for and and solve for .
::我们知道这是一个平方根函数, 所以一般的形式是 y=ax- h+k。 起始点是 (- 6, 1) 。 开始点是 (- 6, 1) 。 将它插入 h和 k, 我们有 y=ax+6+1 。 现在, 使用给定点找到一个 (- 2, 5) 。 让我们用 x 和 y 来替换它, 然后解决一个 。
::5=a-2+6+14=a44=2a2=a2=aThe equation is .
::方程式是 y= 2x+6+1 。Now, let's find the equation of the cubed root function where and and passes through .
::现在,让我们找到立方根函数的方程式, 位置是 h1 和 k4, 然后通过 (- 28, - 3) 。First, plug in what we know to the general equation; . Now, substitute and and solve for .
::首先,插入我们所知道的一般方程; y=x- h3+ky=ax+13-4。 现在, 替换 x28 和 y3, 并解决 a 。
::- 3=a-28+13-41*3a-13=aThe equation of the function is .
::函数的方程式是 y13x+13-4。Finally, let's find the equation of the function below.
::最后,让我们来看看以下函数的等式。It looks like is . Plug this in for and and then use the second point to find .
::看起来(0, - 4) 是 (h, k.) 。 插插在 h 和 k 之间, 然后用第二点来找到一个 。
::- 6=a1-03-4-2=a13-2=aThe equation of this function is .
::此函数的等式为 y2x3-4。When finding the equation of a cubed root function, you may assume that one of the given points is . Whichever point is on the “bend” is for the purposes of this text.
::当查找立方根函数的方程式时, 您可以假设给定的点之一是 (h, k) 。 无论哪个点位于“ 端点” 上, 就本文本而言, 哪一个点是 (h, k) 。Examples
::实例Example 1
::例1Earlier, you were asked to find the equation of the function.
::早些时候,有人要求你找到函数的方程式。First, plug in what we know to the general equation; . Now, substitute and and solve for .
::首先,插入我们所知道的一般方程式;y=x-h3+ky=ax-23+2。 现在, 替换 x=10 和 y2, 并解决 a 。
::-2=a10-23+2-2=a83+2-2=2a+2-4=2aa=2aa=2aa2The equation of the function is .
::函数的方程式是 y2x-23+2。Example 2
::例2Find the equation of the following function.
::查找以下函数的方程式。Substitute what you know into the general equation to solve for . From the final practice problem above, you may assume that is and is .
::以您所知道的代替一般方程 。 从以上最后练习问题, 您可以假设 (5, 8) (h, k) 和 (- 3, 7) (x,y) (x,y) 。
::y=x-53+87=a-3-53+8-1=2a12=aThe equation of this function is .
::此函数的方程式是 Y=12x-53+8。Example 3
::例3Find the equation of the following function.
::查找以下函数的方程式。Substitute what you know into the general equation to solve for . From the graph, the starting point, or is and are a point on the graph.
::将您所知道的替换为要解答的普通方程式。 从图形中, 起始点或( h, k) 是 (4, - 11) 和 (13, 1) 是图上的一个点 。
::y=ax - 4 - 111=a13 - 4 - 1112=3a4=aThe equation of this function is .
::此函数的等式为y=4x-4-11。Example 4
::例4Find the equation of a square root equation with a starting point of and passes through .
::查找平方根方程式的方程式,起点为(-5、-3)和通过(4、-6)。Substitute what you know into the general equation to solve for . From the graph, the starting point, or is and are a point on the graph.
::将您所知道的替换为要解答的普通方程。 从图形中,起点或(h,k)是(-5,-3)和(4,-6)是图形上的点。
::y= 轴+5 - 3 - 6= a4+5 - 3 - 3= 3a - 1=aThe equation of this function is .
::此函数的方程式是 yx+5-3。Review
::回顾Write the equation for each function graphed below.
::写下以下图表的每个函数的方程式 。-
-
-
-
-
-
-
-
-
-
Write the equation of a square root function with starting point
passing through
.
::写入平方根函数的方程式,起点(-6-3)通过(10,-15)。 -
Write the equation of a cube root function with
passing through
.
::写入立方根函数的方程式(h,k)=(2,7)通过(10,11)的方程式。 -
Write the equation of a square root function with starting point
passing through
.
::写入平方根函数的方程式,其起点(-1,6)通过(3,16)。 -
Write the equation of a cubed root function with
passing through
.
::以 (h,k) =(-1,6) 通过 (7,16) 写入立方根函数的方程式。 -
Write the equation of a cubed root function with
passing through
.
::以 (h,k) =(7,16) 通过 (-1,6) 写入立方根函数的方程式。 -
How do the two equations above differ? How are they the same?
::上述两个方程式有何不同?它们如何相同?
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -