7.8 解决双方有变数的激进等式
Section outline
-
The legs of a right triangle measure 12 and . The hypotenuse measures . What are the lengths of the sides with the unknown values?
::右三角的腿 度量 12 和 x+1 。 下限度量 7x+1 。 边的长度与未知值的长度是多少 ?Solving Radical Equations with Variables
::用变量解决极端等式In this concept, we will continue solving radical equations. Here, we will address variables and radicals on both sides of the equation .
::在这个概念中,我们将继续解决激进方程式问题,在这里,我们将处理方程式两侧的变数和激进方程式问题。Let's solve the following radical equations for x.
::让我们解决x的以下基方程。-
::4x+1 -x1
Now we have an that is not under the radical. We will still isolate the radical.
::现在,我们有一个不是在激进下的x。我们仍会孤立激进。
::4x+1-x=1=x-1Now, we can square both sides. Be careful when squaring , the answer is not .
::现在,我们可以对齐两边。 当对齐 x - 1 时要小心, 答案不是 x2 - 1 。
::4x+12=(x- 1) 24x+1=x2-2x+1This problem is now a quadratic. To , we must either factor , when possible, or use the Quadratic Formula . Combine like terms and set one side equal to zero.
::这个问题现在是一个四面形的问题。对 来说,我们必须在可能的时候考虑因素,或者使用“四面形公式 ” 。 将类似条件合并,将一面设置为零。
::4x+1=x2-2x+10=x2-6x0=x(x-6)xx=0或6Check both solutions: . 0 is an extraneous solution .
::检查两个解决方案 : 4 (0)+1 - 1=0+1 - 1=1 - 1=1 - 1=0 *1. 0是一个不相干解决方案 。Therefore , 6 is the only solution.
::因此,6是唯一的解决办法。-
::8-11-3x+19=0
In this problem, you need to isolate both radicals. To do this, subtract the second radical from both sides. Then, square both sides to eliminate the variable .
::在此问题上, 您需要将两个激进分子隔离开来。 要做到这一点, 请从双方中减去第二个激进分子。 然后, 将双方平方来消除变量 。
::8-11-3x+19=08x-112=3x+1928x-11=3x+1995x=30x=6Check:
::检查时间: 8(6)-11-3(6)+19=48-11-18+19=37-37=0-
::4x+14=x 4x+14=x
The radical is isolated. To eliminate it, we must raise both sides to the fourth power.
::激进分子是孤立的,要消灭它,我们必须将双方提升到第四势力。
::2x2 - 144=x42x2 - 1=x40=x4 - 2x2+10=(x2 - 1)(x2 - 1)(x2 - 1)(x2 - 1)0=(x - 1)(x+1)(x - 1)(x - 1)(x+1)(x+1)x1=1或-1Check:
::查询: 2(1)2- 14=2- 14=14=14=1Examples
::实例Example 1
::例1Earlier, you were asked to find the lengths of the sides with the unknown values.
::早些时候,你被要求找到 双方的长度 与未知的价值观。Use the Pythagorean Theorem and solve for x then substitute that value in to solve for the sides with unknowns.
::使用 Pythagorean 定理并解析 x , 然后替换该值, 以解析有未知点的侧面 。
::122+(x+1)2=(7x+1)2144+x+1=7x+1144=6xx=24Now substitute this value into the sides with the unknowns.
::现在用未知来将这个值替换为两面。and
::x+1=24+1=5和
::7x+1=[7(24)]+1=169=13Therefore the leg with the unknown measures 5 and the hypotenuse measures 13.
::因此,有未知措施5和下限措施13的腿上有未知措施5和下限措施13。Solve the following radical equations. Check for extraneous solutions.
::解决以下的激进方程式。 检查不相干的解决办法 。Example 2
::例2
::4x3-2243=xThe radical is isolated. Cube both sides to eliminate the cubed root .
::激进分子是孤立的 立方体两边消灭立方根
::4x3 - 2433=x34x3 - 24=x3 - 24*3 - 3x38=x32=xCheck:
::查询:4(2)3-243=32-243=83=2Example 3
::例3
::5x-3=3x+19Square both sides to solve for .
::双方平方解决 x 。
::5x-32=3x+1925x-3=3x+192x=22x=11Check:
::检查: 5( 11)- 3=3( 11)+1955-3=33+1952=52Example 4
::例4
::6 - 5 - x* 10Add to both sides and square to eliminate the radical.
::在两边和广场上加x 来消灭激进分子
::6-52=(x-(10)26x-5=x2-20x+1000=x2-2-26x+1050=(x-21)(x-55x=21或5)Check both solutions:
::检查两个解决方案 : x=21: 6(21)- 5- 21= 126-5- 5- 21= 121- 21= 11- 21_ @ 10x= 5: 6(5)- 5- 21= 30- 5- 21= 25- 21= 5- 21\ @ 105 is an extraneous solution.
::5是一个不相干的解决办法。Review
::回顾Solve the following radical equations. Be sure to check for extraneous solutions.
::解决以下的激进方程式。 请务必检查不相干的解决办法 。-
::x-3=x-5 -
::x+3+15=x- 12 -
::3x2+544=x -
::x2+60=4x -
::x4+5x3=22x+10 -
::x=5x- 6x=5x-6 -
::3x+4=x-2 -
::x3+8x-9x2-60=0 -
::x=4x+4-x23 x=4x+4-x23 -
::x3+34=2x+34 -
::x2 - 42x2+343=0 -
::x2-21-21=2x3-25x+25
For questions 13-15, you will need to use the method illustrated in the example below.
::对于问题13-15,你将需要使用下面示例中说明的方法。
::x- 15=x-3(x- 15) 2=(x-3) 2x- 15=x-6x+9- 24=_ 6x(4)2=(x) 216=x-
Square both sides
::两边广场 -
Combine like terms to isolate the remaining radical
::结合用词来隔离剩下的激进分子 -
Square both sides again to solve
::双方重开广场,再解决
Check: Don't forget to check your answers for extraneous solutions!
::检查: 不要忘了检查您的答案, 以寻找不相干的解决办法 !-
::x+11-2=x-21 -
::x-6=7x-22xx-6=7x-22 -
::2+x+5=4x-7
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -