Section outline

  • The legs of a right triangle measure 12 and x + 1 . The hypotenuse measures 7 x + 1 . What are the lengths of the sides with the unknown values?
    ::右三角的腿 度量 12 和 x+1 。 下限度量 7x+1 。 边的长度与未知值的长度是多少 ?

    Solving Radical Equations with Variables
    ::用变量解决极端等式

    In this concept, we will continue solving radical equations. Here, we will address variables and radicals on both sides of the equation .
    ::在这个概念中,我们将继续解决激进方程式问题,在这里,我们将处理方程式两侧的变数和激进方程式问题。

    Let's solve the following  radical equations for x.
    ::让我们解决x的以下基方程。

    1. 4 x + 1 x = 1
      ::4x+1 -x1

    Now we have an x that is not under the radical. We will still isolate the radical.
    ::现在,我们有一个不是在激进下的x。我们仍会孤立激进。

    4 x + 1 x = 1 4 x 1 = x 1

    ::4x+1-x=1=x-1

    Now, we can square both sides. Be careful when squaring x 1 , the answer is not x 2 1 .
    ::现在,我们可以对齐两边。 当对齐 x - 1 时要小心, 答案不是 x2 - 1 。

    4 x + 1 2 = ( x 1 ) 2 4 x + 1 = x 2 2 x + 1

    ::4x+12=(x- 1) 24x+1=x2-2x+1

    This problem is now a quadratic. To , we must either factor , when possible, or use the Quadratic Formula . Combine like terms and set one side equal to zero.
    ::这个问题现在是一个四面形的问题。对 来说,我们必须在可能的时候考虑因素,或者使用“四面形公式 ” 。 将类似条件合并,将一面设置为零。

    4 x + 1 = x 2 2 x + 1 0 = x 2 6 x 0 = x ( x 6 ) x = 0   o r   6

    ::4x+1=x2-2x+10=x2-6x0=x(x-6)xx=0或6

    Check both solutions: 4 ( 0 ) + 1 1 = 0 + 1 1 = 1 1 = 0 1 . 0 is an extraneous solution .
    ::检查两个解决方案 : 4 (0)+1 - 1=0+1 - 1=1 - 1=1 - 1=0 *1. 0是一个不相干解决方案 。

    4 ( 6 ) + 1 6 = 24 + 1 6 = 5 6 = 1

    Therefore , 6 is the only solution.
    ::因此,6是唯一的解决办法。

    1. 8 x 11 3 x + 19 = 0
      ::8-11-3x+19=0

    In this problem, you need to isolate both radicals. To do this, subtract the second radical from both sides. Then, square both sides to eliminate the variable .
    ::在此问题上, 您需要将两个激进分子隔离开来。 要做到这一点, 请从双方中减去第二个激进分子。 然后, 将双方平方来消除变量 。

    8 x 11 3 x + 19 = 0 8 x 11 2 = 3 x + 19 2 8 x 11 = 3 x + 19 5 x = 30 x = 6

    ::8-11-3x+19=08x-112=3x+1928x-11=3x+1995x=30x=6

    Check: 8 ( 6 ) 11 3 ( 6 ) + 19 = 48 11 18 + 19 = 37 37 = 0
    ::检查时间: 8(6)-11-3(6)+19=48-11-18+19=37-37=0

    1. 4 x + 1 4 = x
      ::4x+14=x 4x+14=x

    The radical is isolated. To eliminate it, we must raise both sides to the fourth power.
    ::激进分子是孤立的,要消灭它,我们必须将双方提升到第四势力。

    2 x 2 1 4 4 = x 4 2 x 2 1 = x 4 0 = x 4 2 x 2 + 1 0 = ( x 2 1 ) ( x 2 1 ) 0 = ( x 1 ) ( x + 1 ) ( x 1 ) ( x + 1 ) x = 1   o r   1

    ::2x2 - 144=x42x2 - 1=x40=x4 - 2x2+10=(x2 - 1)(x2 - 1)(x2 - 1)(x2 - 1)0=(x - 1)(x+1)(x - 1)(x - 1)(x+1)(x+1)x1=1或-1

    Check: 2 ( 1 ) 2 1 4 = 2 1 4 = 1 4 = 1
    ::查询: 2(1)2- 14=2- 14=14=14=1

    2 ( 1 ) 2 1 4 = 2 1 4 = 1 4 = 1

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find  the lengths of the sides with the unknown values. 
    ::早些时候,你被要求找到 双方的长度 与未知的价值观。

    Use the Pythagorean Theorem and solve for x then substitute that value in to solve for the sides with unknowns.
    ::使用 Pythagorean 定理并解析 x , 然后替换该值, 以解析有未知点的侧面 。

    12 2 + ( x + 1 ) 2 ) = ( 7 x + 1 ) 2 144 + x + 1 = 7 x + 1 144 = 6 x x = 24

    ::122+(x+1)2=(7x+1)2144+x+1=7x+1144=6xx=24

    Now substitute this value into the sides with the unknowns.
    ::现在用未知来将这个值替换为两面。

    x + 1 = 24 + 1 = 5 and
    ::x+1=24+1=5和

    7 x + 1 = [ 7 ( 24 ) ] + 1 = 169 = 13
    ::7x+1=[7(24)]+1=169=13

    Therefore the leg with the unknown measures 5 and the hypotenuse measures 13.
    ::因此,有未知措施5和下限措施13的腿上有未知措施5和下限措施13。

    Solve the following radical equations. Check for extraneous solutions.
    ::解决以下的激进方程式。 检查不相干的解决办法 。

    Example 2
    ::例2

    4 x 3 24 3 = x
    ::4x3-2243=x

    The radical is isolated. Cube both sides to eliminate the cubed root .
    ::激进分子是孤立的 立方体两边消灭立方根

    4 x 3 24 3 3 = x 3 4 x 3 24 = x 3 24 = 3 x 3 8 = x 3 2 = x

    ::4x3 - 2433=x34x3 - 24=x3 - 24*3 - 3x38=x32=x

    Check: 4 ( 2 ) 3 24 3 = 32 24 3 = 8 3 = 2
    ::查询:4(2)3-243=32-243=83=2

    Example 3
    ::例3

    5 x 3 = 3 x + 19
    ::5x-3=3x+19

    Square both sides to solve for x .
    ::双方平方解决 x 。

    5 x 3 2 = 3 x + 19 2 5 x 3 = 3 x + 19 2 x = 22 x = 11

    ::5x-32=3x+1925x-3=3x+192x=22x=11

    Check:

    5 ( 11 ) 3 = 3 ( 11 ) + 19 55 3 = 33 + 19 52 = 52

    ::检查: 5( 11)- 3=3( 11)+1955-3=33+1952=52

    Example 4
    ::例4

    6 x 5 x = 10
    ::6 - 5 - x* 10

     Add x to both sides and square to eliminate the radical.
    ::在两边和广场上加x 来消灭激进分子

    6 x 5 2 = ( x 10 ) 2 6 x 5 = x 2 20 x + 100 0 = x 2 26 x + 105 0 = ( x 21 ) ( x 5 ) x = 21   o r   5

    ::6-52=(x-(10)26x-5=x2-20x+1000=x2-2-26x+1050=(x-21)(x-55x=21或5)

    Check both solutions:

    x = 21 : 6 ( 21 ) 5 21 = 126 5 21 = 121 21 = 11 21 = 10 x = 5 : 6 ( 5 ) 5 21 = 30 5 21 = 25 21 = 5 21 10

    ::检查两个解决方案 : x=21: 6(21)- 5- 21= 126-5- 5- 21= 121- 21= 11- 21_ @ 10x= 5: 6(5)- 5- 21= 30- 5- 21= 25- 21= 5- 21\ @ 10

    5 is an extraneous solution.
    ::5是一个不相干的解决办法。

    Review
    ::回顾

    Solve the following radical equations. Be sure to check for extraneous solutions.
    ::解决以下的激进方程式。 请务必检查不相干的解决办法 。

    1. x 3 = x 5
      ::x-3=x-5
    2. x + 3 + 15 = x 12
      ::x+3+15=x- 12
    3. 3 x 2 + 54 4 = x
      ::3x2+544=x
    4. x 2 + 60 = 4 x
      ::x2+60=4x
    5. x 4 + 5 x 3 = 2 2 x + 10
      ::x4+5x3=22x+10
    6. x = 5 x 6
      ::x=5x- 6x=5x-6
    7. 3 x + 4 = x 2
      ::3x+4=x-2
    8. x 3 + 8 x 9 x 2 60 = 0
      ::x3+8x-9x2-60=0
    9. x = 4 x + 4 x 2 3
      ::x=4x+4-x23 x=4x+4-x23
    10. x 3 + 3 4 = 2 x + 3 4
      ::x3+34=2x+34
    11. x 2 42 x 2 + 343 = 0
      ::x2 - 42x2+343=0
    12. x x 2 21 = 2 x 3 25 x + 25
      ::x2-21-21=2x3-25x+25

    For questions 13-15, you will need to use the method illustrated in the example below.
    ::对于问题13-15,你将需要使用下面示例中说明的方法。

    x 15 = x 3 ( x 15 ) 2 = ( x 3 ) 2 x 15 = x 6 x + 9 24 = 6 x ( 4 ) 2 = ( x ) 2 16 = x

    ::x- 15=x-3(x- 15) 2=(x-3) 2x- 15=x-6x+9- 24=_ 6x(4)2=(x) 216=x

    1. Square both sides
      ::两边广场
    2. Combine like terms to isolate the remaining radical
      ::结合用词来隔离剩下的激进分子
    3. Square both sides again to solve
      ::双方重开广场,再解决

    Check: Don't forget to check your answers for extraneous solutions!
    ::检查: 不要忘了检查您的答案, 以寻找不相干的解决办法 !

    16 15 = 16 3 1 = 4 3 1 = 1

    1. x + 11 2 = x 21
      ::x+11-2=x-21
    2. x 6 = 7 x 22
      ::x-6=7x-22xx-6=7x-22
    3. 2 + x + 5 = 4 x 7
      ::2+x+5=4x-7

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。