Section outline

  • The population of a city was 10,000 in 2012 and is declining at a rate of 5% each year. If this decay rate continues, what will the city's population be in 2017?
    ::2012年,城市人口为10,000人,每年以5%的速度下降。 如果这一衰落率继续下去,2017年城市人口会是多少?

    Exponential Decay Function
    ::指数衰落函数

    Previously, we have only addressed functions where | b | > 1 . So, what happens when b is less than 1? Let’s analyze y = ( 1 2 ) x .
    ::之前,我们只处理“b”1的功能。那么,当b小于1时会怎样?让我们分析y=(12)x。

    Graph y = ( 1 2 ) x and compare it to y = 2 x .
    ::图y=( 12) x 并将其与 y= 2x 比较。

    Let’s make a table of both functions and then graph.
    ::让我们绘制一个两个函数的表格,然后绘制图表。

    lesson content

    x ( 1 2 ) x 2 x
    3 ( 1 2 ) 3 = 1 8 2 3 = 8
    2 ( 1 2 ) 2 = 1 4 2 2 = 4
    1 ( 1 2 ) 1 = 1 2 2 1 = 2
    0 ( 1 2 ) 0 = 1 2 0 = 1
    -1 ( 1 2 ) 1 = 2 2 1 = 1 2
    -2 ( 1 2 ) 2 = 4 2 2 = 1 4
    -3 ( 1 2 ) 3 = 8 2 3 = 1 8

    Notice that y = ( 1 2 ) x is a reflection over the y -axis of y = 2 x . Therefore , instead of , the function y = ( 1 2 ) x decreases exponentially, or exponentially decays . Anytime b is a fraction or decimal between zero and one, the exponential function will decay. And, just like an exponential growth function , and exponential decay function has the form y = a b x and a > 0 . However, to be a decay function, 0 < b < 1 . The exponential decay function also has an asymptote at y = 0 .
    ::注意 Y= (12) x 是 Y = 2x 的 Y 轴的反射。 因此, 函数 y = (12) x 将以指数速度递减, 或以指数速度衰减。 任何时间 b 是零到一之间的小数或小数, 指数函数将会衰减。 和指数增长函数一样, 指数衰减函数有 y=abx 和 a> 0 的形状。 但是, 要成为衰变函数, 0 < b < 1 。 指数衰变函数在 y= 0 时也有一个星数 。

    Let's determine which of the following functions are exponential decay functions, exponential growth functions, or neither and briefly explain our answers.
    ::让我们确定以下哪些函数是指数衰变函数、指数增长函数或两者都不是,并简要解释我们的答案。

    1. y = 4 ( 1.3 ) x
      ::y=4(1.3)x
    2. f ( x ) = 3 ( 6 5 ) x
      :sadfx)=3(65)x
    3. y = ( 3 10 ) x
      ::y= (310) x
    4. g ( x ) = 2 ( 0.65 ) x
      :sadxx) 2 (0.65)x

    a. and b. are exponential growth functions because b > 1 .
    ::a.和b.是指数增长函数,因为 b>1。

    c. is an exponential decay function because b is between zero and one.
    ::c 是一个指数衰变函数,因为 b 介于零和一之间。

    d. is neither growth or decay because a is negative.
    ::d. 既不是增长,也不是因负值而衰减。

    Let's graph g ( x ) = 2 ( 2 3 ) x 1 + 1  and find the y - intercept , asymptote, domain , and range .
    ::让我们将g(x)\\\\\\\\\\\\\\\\\\\1+1, 并找到 y 界面、 空点、 域名和范围 。

    To graph this function, you can either plug it into your calculator (entered Y= -2(2/3)^(X-1)+1) or graph y = 2 ( 2 3 ) x and shift it to the right one unit and up one unit. We will use the second method; final answer is the blue function below.
    ::要图形化此函数, 您可以将它插入到您的计算器( 进入 Y= - 2( 2/3)%( X-1) +1) 或图形 y& 2( 23) x 中, 并移动到右边的一个单位和上一个单位。 我们将使用第二种方法; 最后一个答案是下面的蓝色函数 。

    lesson content

    The y -intercept is:
    ::y 界面是:

    y = 2 ( 2 3 ) 0 1 + 1 = 2 3 2 + 1 = 3 + 1 = 2
    ::y[2](230)-1+1232+1}3+122

    The horizontal asymptote is y = 1 , the domain is all real numbers and the range is y < 1 .
    ::水平数为y=1, 域为所有真实数字, 范围为 y < 1 。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find the city's population in 2017 if the population was 10,000 in 2012 and is declining at a rate of 5% each year.
    ::先前,您被要求在2017年寻找城市人口,如果2012年人口为10,000人,并且每年以5%的速度下降。

    This is an example of exponential decay, so we can once again use the exponential form f ( x ) = a b x h + k , but we have to be careful. In this case, a = 10,000, the starting population, x-h = 5 the number of years, and k = 0, but b is a bit trickier. If the population is decreasing by 5%, each year the population is (1 - 5%) or (1 - 0.05) = 0.95 what it was the previous year. This is our b .
    ::这是一个指数衰减的例子, 所以我们可以再次使用指数表 f( x) = abx-h+k, 但我们必须小心。 在此情况下, a = 10,000, 起始人口, x-h = 5 年数, k = 0, b 则略微小一些。 如果人口减少5%, 人口每年(1 - 5%) 或 (1- 0.05) = 0.95 与前一年一样。 这是我们的 b 。

    P = 10 , 000 0.95 5 = 10 , 000 0.7738 = 7738

    ::P=100000=100000.0.955=100000=100000=0.7738=7738

    Therefore, the city's population in 2017 is 7,738.
    ::因此,2017年城市人口为7 738人。

    For Examples 2-4, graph the . Find the y -intercept, asymptote, domain, and range.
    ::示例 2-4 图形 . 查找 y 界面、 空点、 域和范围 。

    Example 2
    ::例2

    f ( x ) = 4 ( 1 3 ) x
    :sadxx)=4(13)x

    y -intercept: ( 4 , 0 ) , asymptote: y = 0 , domain: all reals, range: y < 0
    ::y 拦截 : (4,0) 停止 : y= 0 , 域 : 所有真数, 范围 : y < 0

    Example 3
    ::例3

    y = 2 ( 2 3 ) x + 3
    ::y2( 23) x+3

    y -intercept: ( 0 , 16 27 ) , asymptote: y = 0 , domain: all reals, range: y < 0
    ::y 截取 : (0, - 1627) , 停止: y= 0, 域: 所有真数, 范围: y < 0

    Example 4
    ::例4

    g ( x ) = ( 3 5 ) x 6
    ::g(x) = (35)x-6

    y -intercept: ( 5 , 0 ) , asymptote: y = 6 , domain: all reals, range: y > 6
    ::y- 拦截sad-5,0) 停止 : y 6, 域 : 所有真数, 范围 : y 6

    For Examples 5-8, determine if the functions are exponential growth, exponential decay, or neither.
    ::对于例5-8,确定函数是指数增长、指数衰减还是两者都不是。

    Example 5
    ::例5

    y = 2.3 x
    ::y=2.3x y=2.3x

     exponential growth
    ::指数指数增长

    Example 6
    ::例6

    y = 2 ( 4 3 ) x
    ::y=(2(43)-x

    exponential decay; recall that a negative exponent flips whatever is in the base. y = 2 ( 4 3 ) x is the same as y = 2 ( 3 4 ) x , which looks like our definition of a decay function.
    ::指数衰变; 提醒注意, 负指数翻转会显示基数中的任何内容。 y=2( 43) - x 与y=2( 34)x 相同, 这看起来像我们对衰变函数的定义 。

    Example 7
    ::例7

    y = 3 0.9 x
    ::y=30.9x

    exponential decay
    ::指数衰变

    Example 8
    ::例8

    y = 1 2 ( 4 5 ) x
    ::y=12( 45)x

    neither; a < 0
    ::都不是; a<0

    Review
    ::回顾

    Determine which of the following functions are exponential growth, exponential decay or neither.
    ::确定以下哪些函数是指数增长、指数衰减或两者都不是。

    1. y = ( 2 3 ) x
      ::y y( 23) x
    2. y = ( 4 3 ) x
      ::y=( 43)x
    3. y = 5 x
      ::y=5x y=5x
    4. y = ( 1 4 ) x
      ::y=( 14) x
    5. y = 1.6 x
      ::y=1.6x y=1.6x
    6. y = ( 6 5 ) x
      ::y( 65)x
    7. y = 0.99 x
      ::y=0.99x y=0.99x

    Graph the following exponential functions. Find the y -intercept, the equation of the asymptote and the domain and range for each function.
    ::图形显示以下的指数函数。查找 y 界面、 空点的方程以及每个函数的域和范围。

    1. y = ( 1 2 ) x
      ::y=( 12) x
    2. y = ( 0.8 ) x + 2
      ::y=( 0. 8) x+2
    3. y = 4 ( 2 3 ) x 1 5
      ::y=4( 23)x- 1 - 5
    4. y = ( 5 7 ) x + 3
      ::y* (57x+3)
    5. y = ( 8 9 ) x + 5 2
      ::y=( 89x+5-2)
    6. y = ( 0.75 ) x 2 + 4
      ::y=( 0. 75x-2+4)
    7. Is the domain of an exponential function always all real numbers? Why or why not?
      ::指数函数的域是否总是所有真实数字?为什么或为什么不是?
    8. A discount retailer advertises that items will be marked down at a rate of 10% per week until sold. The initial price of one item is $50.
      1. Write an exponential decay function to model the price of the item x weeks after it is first put on the rack.
        ::写入指数衰减函数, 以模拟项目 x 首次放在架子上之后的周价格 。
      2. What will the price be after the item has been on display for 5 weeks?
        ::5周内展出该物品之后的价格会是多少?
      3. After how many weeks will the item be half its original price?
        ::经过多少周之后,该项目将达到其原价的一半?

      ::贴现零售商广告说,在售出之前,物品将按每周10%的费率下标。 一个物品的最初价格是50美元。 写入一个指数衰变函数, 以模拟物品在首次放入架子之后的 x 周的价格。 在物品展出5周之后, 价格会是多少? 在物品的最初价格的一半之后, 多少周的价格是多少?

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。