8.2 指数衰落功能
Section outline
-
The population of a city was 10,000 in 2012 and is declining at a rate of 5% each year. If this decay rate continues, what will the city's population be in 2017?
::2012年,城市人口为10,000人,每年以5%的速度下降。 如果这一衰落率继续下去,2017年城市人口会是多少?Exponential Decay Function
::指数衰落函数Previously, we have only addressed functions where . So, what happens when is less than 1? Let’s analyze .
::之前,我们只处理“b”1的功能。那么,当b小于1时会怎样?让我们分析y=(12)x。Graph and compare it to .
::图y=( 12) x 并将其与 y= 2x 比较。Let’s make a table of both functions and then graph.
::让我们绘制一个两个函数的表格,然后绘制图表。3 2 1 0 -1 -2 -3 Notice that is a reflection over the -axis of . Therefore , instead of , the function decreases exponentially, or exponentially decays . Anytime is a fraction or decimal between zero and one, the exponential function will decay. And, just like an exponential growth function , and exponential decay function has the form and . However, to be a decay function, . The exponential decay function also has an asymptote at .
::注意 Y= (12) x 是 Y = 2x 的 Y 轴的反射。 因此, 函数 y = (12) x 将以指数速度递减, 或以指数速度衰减。 任何时间 b 是零到一之间的小数或小数, 指数函数将会衰减。 和指数增长函数一样, 指数衰减函数有 y=abx 和 a> 0 的形状。 但是, 要成为衰变函数, 0 < b < 1 。 指数衰变函数在 y= 0 时也有一个星数 。Let's determine which of the following functions are exponential decay functions, exponential growth functions, or neither and briefly explain our answers.
::让我们确定以下哪些函数是指数衰变函数、指数增长函数或两者都不是,并简要解释我们的答案。-
::y=4(1.3)x -
:fx)=3(65)x
-
::y= (310) x -
:xx) 2 (0.65)x
a. and b. are exponential growth functions because .
::a.和b.是指数增长函数,因为 b>1。c. is an exponential decay function because is between zero and one.
::c 是一个指数衰变函数,因为 b 介于零和一之间。d. is neither growth or decay because is negative.
::d. 既不是增长,也不是因负值而衰减。Let's graph and find the - intercept , asymptote, domain , and range .
::让我们将g(x)\\\\\\\\\\\\\\\\\\\1+1, 并找到 y 界面、 空点、 域名和范围 。To graph this function, you can either plug it into your calculator (entered Y= -2(2/3)^(X-1)+1) or graph and shift it to the right one unit and up one unit. We will use the second method; final answer is the blue function below.
::要图形化此函数, 您可以将它插入到您的计算器( 进入 Y= - 2( 2/3)%( X-1) +1) 或图形 y& 2( 23) x 中, 并移动到右边的一个单位和上一个单位。 我们将使用第二种方法; 最后一个答案是下面的蓝色函数 。The -intercept is:
::y 界面是:
::y[2](230)-1+1232+1}3+122The horizontal asymptote is , the domain is all real numbers and the range is .
::水平数为y=1, 域为所有真实数字, 范围为 y < 1 。Examples
::实例Example 1
::例1Earlier, you were asked to find the city's population in 2017 if the population was 10,000 in 2012 and is declining at a rate of 5% each year.
::先前,您被要求在2017年寻找城市人口,如果2012年人口为10,000人,并且每年以5%的速度下降。This is an example of exponential decay, so we can once again use the exponential form , but we have to be careful. In this case, a = 10,000, the starting population, x-h = 5 the number of years, and k = 0, but b is a bit trickier. If the population is decreasing by 5%, each year the population is (1 - 5%) or (1 - 0.05) = 0.95 what it was the previous year. This is our b .
::这是一个指数衰减的例子, 所以我们可以再次使用指数表 f( x) = abx-h+k, 但我们必须小心。 在此情况下, a = 10,000, 起始人口, x-h = 5 年数, k = 0, b 则略微小一些。 如果人口减少5%, 人口每年(1 - 5%) 或 (1- 0.05) = 0.95 与前一年一样。 这是我们的 b 。
::P=100000=100000.0.955=100000=100000=0.7738=7738Therefore, the city's population in 2017 is 7,738.
::因此,2017年城市人口为7 738人。For Examples 2-4, graph the . Find the -intercept, asymptote, domain, and range.
::示例 2-4 图形 . 查找 y 界面、 空点、 域和范围 。Example 2
::例2
:xx)=4(13)x
-intercept: , asymptote: , domain: all reals, range:
::y 拦截 : (4,0) 停止 : y= 0 , 域 : 所有真数, 范围 : y < 0Example 3
::例3
::y2( 23) x+3-intercept: , asymptote: , domain: all reals, range:
::y 截取 : (0, - 1627) , 停止: y= 0, 域: 所有真数, 范围: y < 0Example 4
::例4
::g(x) = (35)x-6-intercept: , asymptote: , domain: all reals, range:
::y- 拦截-5,0) 停止 : y 6, 域 : 所有真数, 范围 : y 6
For Examples 5-8, determine if the functions are exponential growth, exponential decay, or neither.
::对于例5-8,确定函数是指数增长、指数衰减还是两者都不是。Example 5
::例5
::y=2.3x y=2.3xexponential growth
::指数指数增长Example 6
::例6
::y=(2(43)-xexponential decay; recall that a negative exponent flips whatever is in the base. is the same as , which looks like our definition of a decay function.
::指数衰变; 提醒注意, 负指数翻转会显示基数中的任何内容。 y=2( 43) - x 与y=2( 34)x 相同, 这看起来像我们对衰变函数的定义 。Example 7
::例7
::y=30.9xexponential decay
::指数衰变Example 8
::例8
::y=12( 45)xneither;
::都不是; a<0Review
::回顾Determine which of the following functions are exponential growth, exponential decay or neither.
::确定以下哪些函数是指数增长、指数衰减或两者都不是。-
::y y( 23) x -
::y=( 43)x -
::y=5x y=5x -
::y=( 14) x -
::y=1.6x y=1.6x -
::y( 65)x -
::y=0.99x y=0.99x
Graph the following exponential functions. Find the -intercept, the equation of the asymptote and the domain and range for each function.
::图形显示以下的指数函数。查找 y 界面、 空点的方程以及每个函数的域和范围。-
::y=( 12) x -
::y=( 0. 8) x+2 -
::y=4( 23)x- 1 - 5 -
::y* (57x+3) -
::y=( 89x+5-2) -
::y=( 0. 75x-2+4) -
Is the domain of an exponential function always all real numbers? Why or why not?
::指数函数的域是否总是所有真实数字?为什么或为什么不是? -
A discount retailer advertises that items will be marked down at a rate of 10% per week until sold. The initial price of one item is $50.
-
Write an exponential decay function to model the price of the item
weeks after it is first put on the rack.
::写入指数衰减函数, 以模拟项目 x 首次放在架子上之后的周价格 。 -
What will the price be after the item has been on display for 5 weeks?
::5周内展出该物品之后的价格会是多少? -
After how many weeks will the item be half its original price?
::经过多少周之后,该项目将达到其原价的一半?
::贴现零售商广告说,在售出之前,物品将按每周10%的费率下标。 一个物品的最初价格是50美元。 写入一个指数衰变函数, 以模拟物品在首次放入架子之后的 x 周的价格。 在物品展出5周之后, 价格会是多少? 在物品的最初价格的一半之后, 多少周的价格是多少? -
Write an exponential decay function to model the price of the item
weeks after it is first put on the rack.
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -