8.4 数字e
Section outline
-
The interest on a sum of money that compounds continuously can be calculated with the formula , where P is the amount invested (the principal), r is the interest rate , and t is the amount of time the money is invested. If you invest $1000 in a bank account that pays 2.5% interest compounded continuously and you leave the money in that account for 4 years, how much interest will you earn?
::持续混合的金额的利息可以用公式I=Pert-P计算,P是投资金额(本金 ) , r是利率, t是投资时间。 如果您在持续支付2.5%利息的银行账户上投资1 000美元,然后将这笔钱留在该账户4年,你将赚取多少利息?The Number e
::编号eThere are many special numbers in mathematics: , zero, , among others. In this concept, we will introduce another special number that is known only by a letter, . It is called the natural number (or base), or the Euler number , named after the Swiss mathematician Leonhard Euler who popularized the use of the letter for the constant . Credit for discovery of the constant itself goes to another important Swiss mathematician, Jacob Bernoulli, and his study of sequences in compound interest.
::数学中有许多特殊数字:,0,2,等等。在这个概念中,我们将引入另一个只有字母才知道的特殊数字,即称为自然数字(或基准),或以瑞士数学家Leonhard Euler命名的Euler数字。他把字母的使用普及到常数中。发现常数本身的功劳归另一个重要的瑞士数学家Jacob Bernoulli,以及他为了复合利益对序列的研究。We previously learned that the formula for compound interest is . Let’s set and equal to one and see what happens, .
::我们以前知道复利的公式是 A=P(1+rn)nt。让我们设定 P,r 和 t 等于 1, 看看会发生什么, A=(1+1n)n。Finding the values of as gets larger
::当 n 变大时查找 (1+1n) n 的值Step 1: Copy the table below and fill in the blanks. Round each entry to the nearest 4 decimal places.
::第1步:复制下表并填入空白。将每个条目四舍五入到小数点后最接近的四位位数。1 2 3 4 5 6 7 8 Step 2: Does it seem like the numbers in the table are approaching a certain value? What do you think the number is?
::第2步:表内的数字似乎接近某个数值吗?你认为数字是什么?Step 3: Find and . Does this change your answer from #2?
::第3步:查找(1+1100100)100和(1+111001000)1000。这是否改变了您对 #2的回答?Step 4: Fill in the blanks: As approaches ___________, ___________ approaches
::第4步:填补空白:随着n接近___, e___________________________________________________________________________________________________________________#___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________We define as the number that approaches as ( approaches infinity). is an irrational number with the first 12 decimal places above.
::我们将e定义为(1+1n)n接近n(n接近无穷)。 e 是一个不合理的数字,前一位小数点为12位。Let's graph and identify the asymptote , - intercept , domain and range .
::让我们来绘制 y =ex 并识别无线、 y 界面、 域和范围 。As you would expect, the graph of will curve between and .
::如您所料 前方图将在 2x 和 3x 之间曲线 。The asymptote is and the -intercept is (0, 1) because anything to the zero power is one. The domain is all real numbers and the range is all positive real numbers; .
::空点为 y=0, y 拦截是 (0, 1) , 因为任何零功率是 1 。 域是所有真实数字, 范围是所有正数 ; y> 0 。Now, let's simplify .
::现在,让我们简化e2e4。The bases are the same, so you can just add the exponents. The answer is .
::基数相同, 所以您可以添加引号。 答案是e6 。Finally, let's solve the following problem.
::最后,让我们解决以下问题。Gianna opens a savings account with $1000 and it accrues interest continuously at a rate of 5%. What is the balance in the account after 6 years?
::Gianna开立了一个1 000美元的储蓄账户,以5%的利率不断累积利息。 6年后账户的余额是多少?Previously, the word problems you have dealt with involve interest that compounded monthly, quarterly, annually, etc. In this example, the interest compounds continuously. The equation changes slightly, from to , without , because there is no longer any interval. Therefore , the equation for this problem is and the account will have $1349.86 in it. Compare this to daily accrued interest, which would be .
::以前,您所处理的单词问题涉及每月、季度、年度等的利息,在这个例子中,利息化合物是连续的。方程式略有变化,从A=P(1+rn)nt到A=Pert,没有n,因为不再有任何间隔。因此,这个问题的方程式是A=1000e0.05(6),账户中将有1349.86美元。与每日累计利息相比,这是A=1000(1+0.05365)365(6)=1349.83。Examples
::实例Example 1
::例1Earlier, you were asked to find how much money you will earn after 4 years.
::更早之前,有人要求你 找找四年后能赚到多少钱Plug the given values into the equation and solve for I.
::将给定值插入方程式 I = Pert, 并为 I 解析 。
::I=Pert-PI=10000-e0.025-4-1000I=10000-e0.1-1000I=10000-e0.1-1000I=10000-11.0517-1000I=11005.17-1000=105.17-1000=105.17Therefore, at the end of 4 years, you will have earned $105.17 in interest.
::因此,在四年结束时,你将赚取105.17美元的利息。Determine if Examples 2-5 are , decay, or neither.
::确定例 2-5 是 、 衰变还是 都不是 。Recall to be exponential growth, the base must be greater than one. To be , the base must be between zero and one.
::回顾指数增长,基数必须大于1。 基数必须是0到1。 基数必须是0到1。Example 2
::例2
::y=12ex y=12exExponential growth;
::指数增长;e>1Example 3
::例3
::y4xNeither;
::两者中均无;a<0Example 4
::例4
::y=e-x y=e-xExponential decay; and
::指数衰变; e-x=(1e)x 和 0 < 1e < 1Example 5
::例5
::y= 2(1e)-xExponential growth;
::指数增长;(1e)-x=exExample 6
::例6Simplify the following expression with .
::以 e. 简化以下表达式。
::2 e-3e2or
::2 - 3e2=2e-1或2eExample 7
::例7Simplify the following expression with .
::以 e. 简化以下表达式。
::4 e616e2
::4,616e2=e44Example 8
::例8The rate of radioactive decay of radium is modeled by , where is the amount (in grams) of radium present after years and is the initial amount (also in grams). If there is 698.9 grams of radium present after 5,000 years, what was the initial amount?
::R=Pe-0.00043t以放射性衰减率为模型,R是年之后的放射性衰减率(克),P是初始值(也以克计),如果5 000年后有698.9克的放射性衰减率,初始值是多少?Use the formula given in the problem and solve for what you don’t know.
::使用问题中给出的公式解决您不知道的事情。
::R=Pe-0000043t698.9=Pe-0000043(5000698.9=P(0.116.448)600=P)There was about 6000 grams of radium to start with.
::开始大约有6000克的放射线。Review
::回顾Determine if the following functions are exponential growth, decay or neither. Give a reason for your answer.
::确定以下函数是指数增长、衰变或两者都不是。请说明回答的理由。-
::y=43ex y=43ex -
::ye - x+3 -
::y=(1e)x+2 -
::y=( 3e) - x - 5
Simplify the following expressions with .
::以 e. 简化以下表达式。-
::电子-3e12 -
::5e-4e3 5e-4e3 -
::6e5e-4 -
:4e43e-2e3)-2(4e43e-2e3)
Solve the following word problems.
::解决以下字词问题 。The population of Springfield is growing exponentially. The growth can be modeled by the function , where represents the projected population, represents the current population of 100,000 in 2012 and represents the number of years after 2012.
::斯普林菲尔德的人口正在成倍增长。 增长可以通过P=Ie0.055t的函数进行模拟,P代表预计人口,我代表2012年的目前人口100,000人, t代表2012年之后的年数。-
To the nearest person, what will the population be in 2022?
::对最近的一个人来说,2022年的人口将是什么? -
In what year will the population double in size if this growth rate continues?
::如果这一增长率继续下去,人口规模将在哪一年翻一番?
The value of Steve’s car decreases in value according to the exponential decay function: , where is the current value of the vehicle, is the number of years Steve has owned the car and is the purchase price of the car, $25,000.
::V=Pe-0.12t, V是车辆的现值, t是史蒂夫拥有汽车的年数,P是汽车的购买价格25 000美元。-
To the nearest dollar, what will the value of Steve’s car be in 2 years?
::史蒂夫的汽车在两年内的价值会是多少? -
To the nearest dollar, what will the value be in 10 years?
::最接近的美元,十年内值是多少?
Naya invests $7500 in an account which accrues interest continuously at a rate of 4.5%.
::Naya投资7500美元在一个账户中,该账户以4.5%的利率持续产生利息。-
Write an exponential growth function to model the value of her investment after
years.
::写一个指数增长函数 来模拟她投资价值的模型 在 T 年之后。 -
How much interest does Naya earn in the first six months to the nearest dollar?
::纳亚在头6个月中 赚到多少利息 至最近的美元? -
How much money, to the nearest dollar, is in the account after 8 years?
::8年后的账户里有多少钱, 最接近的美元?
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -