Section outline

  • The interest on a sum of money that compounds continuously can be calculated with the formula I = P e r t P , where P is the amount invested (the principal), r is the interest rate , and t is the amount of time the money is invested. If you invest $1000 in a bank account that pays 2.5% interest compounded continuously and you leave the money in that account for 4 years, how much interest will you earn?
    ::持续混合的金额的利息可以用公式I=Pert-P计算,P是投资金额(本金 ) , r是利率, t是投资时间。 如果您在持续支付2.5%利息的银行账户上投资1 000美元,然后将这笔钱留在该账户4年,你将赚取多少利息?

    The Number e
    ::编号e

    There are many special numbers in mathematics: π , zero, 2 , among others. In this concept, we will introduce another special number that is known only by a letter, e . It is called the natural number (or base), or the Euler number , named after the Swiss mathematician Leonhard Euler who popularized the use of the letter e for the constant . Credit for discovery of the constant itself goes to another important Swiss mathematician, Jacob Bernoulli, and his study of sequences in compound interest.
    ::数学中有许多特殊数字:,0,2,等等。在这个概念中,我们将引入另一个只有字母才知道的特殊数字,即称为自然数字(或基准),或以瑞士数学家Leonhard Euler命名的Euler数字。他把字母的使用普及到常数中。发现常数本身的功劳归另一个重要的瑞士数学家Jacob Bernoulli,以及他为了复合利益对序列的研究。

    We previously learned that the formula for compound interest is A = P ( 1 + r n ) n t . Let’s set P , r and t equal to one and see what happens, A = ( 1 + 1 n ) n .
    ::我们以前知道复利的公式是 A=P(1+rn)nt。让我们设定 P,r 和 t 等于 1, 看看会发生什么, A=(1+1n)n。

    Finding the values of ( 1 + 1 n ) n as n gets larger
    ::当 n 变大时查找 (1+1n) n 的值

    Step 1: Copy the table below and fill in the blanks. Round each entry to the nearest 4 decimal places.
    ::第1步:复制下表并填入空白。将每个条目四舍五入到小数点后最接近的四位位数。

    n 1 2 3 4 5 6 7 8
    ( 1 + 1 n ) n ( 1 + 1 1 ) 1 = 2 ( 1 + 1 2 ) 2 = 2.25            

    Step 2: Does it seem like the numbers in the table are approaching a certain value? What do you think the number is?
    ::第2步:表内的数字似乎接近某个数值吗?你认为数字是什么?

    Step 3: Find ( 1 + 1 100 ) 100 and ( 1 + 1 1000 ) 1000 . Does this change your answer from #2?
    ::第3步:查找(1+1100100)100和(1+111001000)1000。这是否改变了您对 #2的回答?

    Step 4: Fill in the blanks: As n approaches ___________, ___________ approaches e 2.718281828459
    ::第4步:填补空白:随着n接近___, e___________________________________________________________________________________________________________________#___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    We define e as the number that ( 1 + 1 n ) n approaches as n ( n approaches infinity). e is an irrational number with the first 12 decimal places above.
    ::我们将e定义为(1+1n)n接近n(n接近无穷)。 e 是一个不合理的数字,前一位小数点为12位。

    Let's graph y = e x  and identify the asymptote , y - intercept , domain and range .
    ::让我们来绘制 y =ex 并识别无线、 y 界面、 域和范围 。

    As you would expect, the graph of e x will curve between 2 x and 3 x .
    ::如您所料 前方图将在 2x 和 3x 之间曲线 。

    lesson content

    The asymptote is y = 0 and the y -intercept is (0, 1) because anything to the zero power is one. The domain is all real numbers and the range is all positive real numbers; y > 0 .
    ::空点为 y=0, y 拦截是 (0, 1) , 因为任何零功率是 1 。 域是所有真实数字, 范围是所有正数 ; y> 0 。

    Now, let's simplify e 2 e 4 .
    ::现在,让我们简化e2e4。

    The bases are the same, so you can just add the exponents. The answer is e 6 .
    ::基数相同, 所以您可以添加引号。 答案是e6 。

    Finally, let's solve the following problem.
    ::最后,让我们解决以下问题。

    Gianna opens a savings account with $1000 and it accrues interest continuously at a rate of 5%. What is the balance in the account after 6 years?
    ::Gianna开立了一个1 000美元的储蓄账户,以5%的利率不断累积利息。 6年后账户的余额是多少?

    Previously, the word problems you have dealt with involve interest that compounded monthly, quarterly, annually, etc. In this example, the interest compounds continuously. The equation changes slightly, from A = P ( 1 + r n ) n t to A = P e r t , without n , because there is no longer any interval. Therefore , the equation for this problem is A = 1000 e 0.05 ( 6 ) and the account will have $1349.86 in it. Compare this to daily accrued interest, which would be A = 1000 ( 1 + 0.05 365 ) 365 ( 6 ) = 1349.83 .
    ::以前,您所处理的单词问题涉及每月、季度、年度等的利息,在这个例子中,利息化合物是连续的。方程式略有变化,从A=P(1+rn)nt到A=Pert,没有n,因为不再有任何间隔。因此,这个问题的方程式是A=1000e0.05(6),账户中将有1349.86美元。与每日累计利息相比,这是A=1000(1+0.05365)365(6)=1349.83。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find how much money you will earn after 4 years. 
    ::更早之前,有人要求你 找找四年后能赚到多少钱

    Plug the given values into the equation I = P e r t and solve for I.
    ::将给定值插入方程式 I = Pert, 并为 I 解析 。

    I = P e r t P I = 1000 e 0.025 4 1000 I = 1000 e 0.1 1000 I = 1000 1.10517 1000 I = 1105.17 1000 = 105.17

    ::I=Pert-PI=10000-e0.025-4-1000I=10000-e0.1-1000I=10000-e0.1-1000I=10000-11.0517-1000I=11005.17-1000=105.17-1000=105.17

    Therefore, at the end of 4 years, you will have earned $105.17 in interest.
    ::因此,在四年结束时,你将赚取105.17美元的利息。

    Determine if Examples 2-5 are , decay, or neither.
    ::确定例 2-5 是 、 衰变还是 都不是 。

    Recall to be exponential growth, the base must be greater than one. To be , the base must be between zero and one.
    ::回顾指数增长,基数必须大于1。 基数必须是0到1。 基数必须是0到1。

    Example 2
    ::例2

    y = 1 2 e x
    ::y=12ex y=12ex

    Exponential growth; e > 1
    ::指数增长;e>1

    Example 3
    ::例3

    y = 4 e x
    ::y4x

    Neither; a < 0
    ::两者中均无;a<0

    Example 4
    ::例4

    y = e x
    ::y=e-x y=e-x

    Exponential decay; e x = ( 1 e ) x and 0 < 1 e < 1
    ::指数衰变; e-x=(1e)x 和 0 < 1e < 1

    Example 5
    ::例5

    y = 2 ( 1 e ) x
    ::y= 2(1e)-x

    Exponential growth; ( 1 e ) x = e x
    ::指数增长;(1e)-x=ex

    Example 6
    ::例6

    Simplify the following expression with e .
    ::以 e. 简化以下表达式。

    2 e 3 e 2
    ::2 e-3e2

    2 e 3 e 2 = 2 e 1 or 2 e
    ::2 - 3e2=2e-1或2e

    Example 7
    ::例7

    Simplify the following expression with   e .
    ::以 e. 简化以下表达式。

    4 e 6 16 e 2
    ::4 e616e2

    4 e 6 16 e 2 = e 4 4
    ::4,616e2=e44

    Example 8
    ::例8

    The rate of radioactive decay of radium is modeled by R = P e 0.00043 t , where R is the amount (in grams) of radium present after t years and P is the initial amount (also in grams). If there is 698.9 grams of radium present after 5,000 years, what was the initial amount?
    ::R=Pe-0.00043t以放射性衰减率为模型,R是年之后的放射性衰减率(克),P是初始值(也以克计),如果5 000年后有698.9克的放射性衰减率,初始值是多少?

    Use the formula given in the problem and solve for what you don’t know.
    ::使用问题中给出的公式解决您不知道的事情。

    R = P e 0.00043 t 698.9 = P e 0.00043 ( 5000 ) 698.9 = P ( 0.11648 ) 6000 = P

    ::R=Pe-0000043t698.9=Pe-0000043(5000698.9=P(0.116.448)600=P)

    There was about 6000 grams of radium to start with.
    ::开始大约有6000克的放射线。

    Review
    ::回顾

    Determine if the following functions are exponential growth, decay or neither. Give a reason for your answer.
    ::确定以下函数是指数增长、衰变或两者都不是。请说明回答的理由。

    1. y = 4 3 e x
      ::y=43ex y=43ex
    2. y = e x + 3
      ::ye - x+3
    3. y = ( 1 e ) x + 2
      ::y=(1e)x+2
    4. y = ( 3 e ) x 5
      ::y=( 3e) - x - 5

    Simplify the following expressions with e .
    ::以 e. 简化以下表达式。

    1. e 3 e 12
      ::电子-3e12
    2. 5 e 4 e 3
      ::5e-4e3 5e-4e3
    3. 6 e 5 e 4
      ::6e5e-4
    4. ( 4 e 4 3 e 2 e 3 ) 2
      :sad4e43e-2e3)-2(4e43e-2e3)

    Solve the following word problems.
    ::解决以下字词问题 。

    The population of Springfield is growing exponentially. The growth can be modeled by the function P = I e 0.055 t , where P represents the projected population, I represents the current population of 100,000 in 2012 and t represents the number of years after 2012.
    ::斯普林菲尔德的人口正在成倍增长。 增长可以通过P=Ie0.055t的函数进行模拟,P代表预计人口,我代表2012年的目前人口100,000人, t代表2012年之后的年数。

    1. To the nearest person, what will the population be in 2022?
      ::对最近的一个人来说,2022年的人口将是什么?
    2. In what year will the population double in size if this growth rate continues?
      ::如果这一增长率继续下去,人口规模将在哪一年翻一番?

    The value of Steve’s car decreases in value according to the exponential decay function: V = P e 0.12 t , where V is the current value of the vehicle, t is the number of years Steve has owned the car and P is the purchase price of the car, $25,000.
    ::V=Pe-0.12t, V是车辆的现值, t是史蒂夫拥有汽车的年数,P是汽车的购买价格25 000美元。

    1. To the nearest dollar, what will the value of Steve’s car be in 2 years?
      ::史蒂夫的汽车在两年内的价值会是多少?
    2. To the nearest dollar, what will the value be in 10 years?
      ::最接近的美元,十年内值是多少?

    Naya invests $7500 in an account which accrues interest continuously at a rate of 4.5%.
    ::Naya投资7500美元在一个账户中,该账户以4.5%的利率持续产生利息。

    1. Write an exponential growth function to model the value of her investment after t years.
      ::写一个指数增长函数 来模拟她投资价值的模型 在 T 年之后。
    2. How much interest does Naya earn in the first six months to the nearest dollar?
      ::纳亚在头6个月中 赚到多少利息 至最近的美元?
    3. How much money, to the nearest dollar, is in the account after 8 years?
      ::8年后的账户里有多少钱, 最接近的美元?

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。