Section outline

  • If you continue to study mathematics into college, you may take a course called Differential Equations. There you will learn that the solution to the differential equation y = y is the general function y = C e x . What is the inverse of this function?
    ::如果您继续上大学学习数学,您可以选修一个名为“差异等量”的课程。在那里,您会知道,区别等式yy的解决方案是通用函数y=Cex。这个函数的反义是什么?

    Inverse Properties of Logarithm s
    ::对数的反对数属性

    By the definition of a logarithm, it is the inverse of an exponent. Therefore, a logarithmic function is the inverse of an exponential function. Recall what it means to be an inverse of a function. When two inverses are composed, they equal x . Therefore, if f ( x ) = b x and g ( x ) = log b x , then:
    ::根据对数定义,它是引言的反义。因此,对数函数是指数函数的反反义。回顾它的意思是一个函数的反反义。当两个反义组成时,它们等于 x。因此,如果 f(x)=bx和g(x)=logbx,那么:

    f g = b log b x = x and g f = log b b x = x
    ::fg=blogbx=x和gf=logbbx=x

    These are called the Inverse Properties of Logarithms.
    ::这些被称为对数的反属性 。

    Let's solve the following problems. W e will use the Inverse Properties of Logarithms.
    ::让我们解决以下的问题。 我们将使用对数的反属性 。

    1. Find  10 log 56 .
      ::寻找 10log56。

    Using the first property, we see that the bases cancel each other out. 10 log 56 = 56
    ::使用第一种财产,我们看到基地互相取消。 10log56=56

    e ln 6 e ln 2
    ::2

    Here, e and the natural log cancel out and we are left with 6 2 = 12 .
    ::在这里,e和自然日志取消,我们只剩下62=12。

    1. Find log 4 16 x .
      ::查找log416x。

    We will use the second property here. Also, rewrite 16 as 4 2 .
    ::我们将使用这里的第二处地产 并且将16号重写为42号

    log 4 16 x = log 4 ( 4 2 ) x = log 4 4 2 x = 2 x
    ::log4\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    1. Find the inverse of f ( x ) = 2 e x 1 .
      ::查找 f( x) =2ex- 1 的反义。

    Change f ( x ) to y . Then, switch x and y .
    ::修改 f(x) 至 y。 然后,切换 x 和 y。

    y = 2 e x 1 x = 2 e y 1

    ::y=2ex- 1x=2ey- 1

    Now, we need to isolate the exponent and take the logarithm of both sides. First divide by 2.
    ::现在,我们需要孤立推手 并取出双方的对数。第一除以2。

    x 2 = e y 1 ln ( x 2 ) = ln e y 1

    ::x2=ey- 1ln_( x2)=ln_ ey- 1

    Recall the Inverse Properties of Logarithms from earlier in this concept. log b b x = x ; applying this to the right side of our equation, we have ln e y 1 = y 1 . Solve for y .
    ::在此概念的前面, 回想起对数的反属性 。 logbbx=x; 将它应用到方程的右侧, 我们有 iney- 1=y- 1. y 解决 y 。

    ln ( x 2 ) = y 1 ln ( x 2 ) + 1 = y

    ::In(x2) =y - 1ln(x2)+1=y

    Therefore, ln ( x 2 ) + 1 is the inverse of 2 e y 1 .
    ::因此,In(x2)+1是 2ey-1 的反义词。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find  the inverse of  y = C e x .
    ::早些时候,你被要求找到y=Cex的反面。

    Switch x and y in the function y = C e x and then solve for y .
    ::在 y= Cex 函数中切换 x 和 y, 然后为 y 解答 。

    x = C e y x C = e y l n x C = l n ( e y ) l n x C = y

    ::x=CeyxC=eylnxC=ln(ey)lnxC=y

    Therefore, the inverse of y = C e x is y = l n x C .
    ::因此,y=Cex的反义是y=lnxC。

    Example 2
    ::例2

    Simplify 5 log 5 6 x .
    ::简化 5log5 6x 。

    Using the first inverse property, the log and the base cancel out, leaving 6 x as the answer.
    ::使用第一个反向属性,日志和基础取消,留下6x作为答案。

    5 log 5 6 x = 6 x

    ::5log56x=6x

    Example 3
    ::例3

    Simplify log 9 81 x + 2 .
    ::简化对数 9\\\\\\ 81x+2 。

    Using the second inverse property and changing 81 into 9 2 we have:
    ::使用第二个反向属性,将81改为92,我们有:

    log 9 81 x + 2 = log 9 9 2 ( x + 2 ) = 2 ( x + 2 ) = 2 x + 4

    ::对数 9\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\4\\\\\\\\\\\\\\\\\\\\\4\\\\\\\\\\\\\\\\\\\\4

    Example 4
    ::例4

    Find the inverse of f ( x ) = 4 x + 2 5 .
    ::查找 f( x) =4x+2 - 5 的反义。

    f ( x ) = 4 x + 2 5 y = 4 x + 2 5 x = 4 y + 2 5 x + 5 = 4 y + 2 log 4 ( x + 5 ) = y + 2 log 4 ( x + 5 ) 2 = y

    ::f( x) = 4x+2-2- 5y= 4x+2-2-5x= 4y+2-5x+5= 4y+2log4( x+5) =y+2log4( x+5) - 2=y

    Review
    ::回顾

    Use the Inverse Properties of Logarithms to simplify the following expressions.
    ::使用对数的逆属性来简化以下表达式。

    1. log 3 27 x
      ::对数 327x
    2. log 5 ( 1 5 ) x
      ::对数 5( 15) x
    3. log 2 ( 1 32 ) x
      ::log2(132)x
    4. 10 log ( x + 3 )
      ::10log( x+3)
    5. log 6 36 ( x 1 )
      ::对数 636(x- 1)
    6. 9 log 9 ( 3 x )
      ::9log9( 3x)
    7. e ln ( x 7 )
      ::eln(x-7)
    8. log ( 1 100 ) 3 x
      ::log*( 1100)3x
    9. ln e ( 5 x 3 )
      :sad5x-3)内

    Find the inverse of each of the following exponential functions.
    ::查找下列指数函数的反向。

    1. y = 3 e x + 2
      ::y=3ex+2 y=3ex+2
    2. f ( x ) = 1 5 e x 7
      :sadxx)=15ex7
    3. y = 2 + e 2 x 3
      ::y=2+e2x-3
    4. f ( x ) = 7 3 x + 1 5
      :sadxx)=73x+1-5)
    5. y = 2 ( 6 ) x 5 2
      ::y=2(6)x-52
    6. f ( x ) = 1 3 ( 8 ) x 2 5
      :sadxx)=13(8)x2-5

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。