Section outline

  • Your math homework assignment is to find out which quadrants the graph of the function f ( x ) = 4 ln ( x + 3 ) falls in. On the way home, your best friend tells you, "This is the easiest homework assignment ever! All fall in Quadrants I and IV." You're not so sure, so you go home and graph the function as instructed. Your graph falls in Quadrant I as your friend thought, but instead of Quadrant IV, it also falls in Quadrants II and III. Which one of you is correct?
    ::您的数学作业任务是找出函数 f( x) = 4ln {( x+ 3) 的图形属于哪个四分位数。 在回家的路上, 您最好的朋友告诉你, “ 这是有史以来最简单的作业任务! 全部落在 Quadrants I 和 IV 中 。” 您不太确定, 因此您可以按指示回家, 绘制函数图。 您的图表在 Quadrant I 中依朋友的意想写在 Quadrant I 中, 而不是 Quadrant IV, 它也属于 Qadrant II 和 III 。 你们中的哪一个是正确的 ?

    Graphing Logarithmic Functions
    ::图形对数函数

    Now that we are more comfortable with using these functions as inverses, let’s use this idea to graph a logarithmic function. Recall that functions are inverses of each other when they are mirror images over the line y = x . Therefore, if we reflect y = b x over y = x , then we will get the graph of y = log b x .
    ::现在,我们更愿意使用这些函数作为反函数,让我们使用这个想法来绘制对数函数。当函数是 y=x 线上的镜像图像时,提醒注意这些函数是彼此的反函数。因此,如果我们在 y=x 上反射 y=bx,那么我们就会得到 y=logbx 的图。

    lesson content
    lesson content

    Recall that an exponential function has a horizontal asymptote. Because the logarithm is its inverse, it will have a vertical asymptote. The general form of a logarithmic function is f ( x ) = a log b ( x h ) + k and the vertical asymptote is x = h . The domain is x > h and the range is all real numbers. Lastly, if b > 1 , the graph moves up to the right. If 0 < b < 1 , the graph moves down to the right.
    ::提醒注意一个指数函数有一个水平的单点。 由于对数是它的反向, 它将有一个垂直的单点。 对数函数的一般形式是 f( x) =alogb( x-h)+k, 垂直的对数函数一般形式是 x=h。 域是 x>h, 范围是全部真实数字。 最后, 如果 b>1, 图形会向右移动。 如果 0 < b < 1, 图形会向右移动 。

    Let's graph y = log 3 ( x 4 )  and state the domain and range.
    ::让我们用图y=log3}(x- 4)来说明域和范围。

    lesson content

    To graph a logarithmic function without a calculator, start by drawing the vertical asymptote, at x = 4 . We know the graph is going to have the general shape of the first function above. Plot a few points, such as (5, 0), (7, 1), and (13, 2) and connect.
    ::要绘制一个没有计算器的对数函数,首先在 x=4 处绘制垂直静态。 我们知道该图将具有上面第一个函数的一般形状。 绘制几个点, 如 (5, 0, 7, 1) 和 (13, 2) , 并连接 。

    The domain is x > 4 and the range is all real numbers.
    ::域为 x>4, 范围为所有实际数字 。

    Now, let's determine if (16, 1) is on y = log ( x 6 ) .
    ::现在,让我们确定是否在y=log(x-6)上(16,1)。

    Plug in the point to the equation to see if it holds true.
    ::插在方程的点上 看看它是否真实。

    1 = log ( 16 6 ) 1 = log 10 1 = 1

    ::1=log(16-6)1=log101=1

    Yes, this is true, so (16, 1) is on the graph.
    ::是的,这是真的,所以图上是16,1。

    Finally, let's graph f ( x ) = 2 ln ( x + 1 ) .
    ::最后,让我们用图表f(x)=2ln(x+1)

    To graph a natural log, we can  use a graphing calculator. Press Y = and enter in the function, Y = 2 ln ( x + 1 ) , GRAPH .
    ::要绘制自然日志图, 我们可以使用图形计算器。 按 Y = 并输入此函数, Y= 2ln( x+1), GRAPH 。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to determine if your friend was correct.
    ::早些时候,有人要求你确定你的朋友是否正确。

    The vertical asymptote of the function f ( x ) = 4 ln ( x + 3 ) is x = 3 . Since x will approach 3 but never quite reach it, x can assume some negative values. Hence, the function will fall in Quadrants II and III. Therefore, you are correct and your friend is wrong.
    ::函数 f( x) = 4ln( x+3) 的垂直位数为 x @ 3。 由于 x 将接近 - 3, 但无法到达它, x 可以假定一些负值。 因此, 该函数将降为二次和三次。 因此, 您是正确的, 您的朋友错了 。

    Example 2
    ::例2

    Graph y = log 1 4 x + 2 in an appropriate window.
    ::图y=log14x+2 在适当的窗口中。

    First, there is a vertical asymptote at x = 0 . Now, determine a few easy points, points where the log is easy to find; such as (1, 2), (4, 1), (8, 0.5), and (16, 0).
    ::首先, x=0 时有一个垂直断点。 现在, 确定几个简单点, 日志容易找到的点 。 例如 (1, 2, 4, 1), (8, 0. 5) 和 (16, 0) 。

    To graph a logarithmic function using a TI-83/84, enter the function into Y = and use the Formula: l o g a x = l o g b x l o g b a . The keystrokes would be:
    ::要用 TI-83/84 绘制对数函数,请将函数输入 Y= ,并使用 公式: logbxlogba : logax= logblogba。 键对数将是:

    Y = log ( x ) log ( 1 4 ) + 2 , GRAPH
    ::Y=log(x)log(14)+2,GRAPH

    To see a table of values, press 2 n d GRAPH .
    ::要查看数值表,请按2ndGRAPH。

    Example 3
    ::例3

    Graph y = log x using a graphing calculator. Find the domain and range.
    ::使用图形计算器的 ylogx 图形。 查找域和范围 。

    The keystrokes are Y = log ( x ) , GRAPH .
    ::键盘是Ylog(x),GRAPH。

    The domain is x > 0 and the range is all real numbers.
    ::域为 x>0, 区域为所有实际数字 。

    Example 4
    ::例4

     Is (-2, 1) on the graph of f ( x ) = log 1 2 ( x + 4 ) ?
    ::f( x) =log12 ( x+4) 的图形是否( 2, 1) ?

    Plug (-2, 1) into f ( x ) = log 1 2 ( x + 4 ) to see if the equation holds true.
    ::插件 (-2, 1) 插入 f( x) = log12 ( x+ 4) , 看看方程式是否正确 。

    1 = log 1 2 ( 2 + 4 ) 1 = log 1 2 2 1 1

    ::1=log12(-2+4)1=log12211

    Therefore, (-2, 1) is not on the graph. However, (-2, -1) is.
    ::因此,(-2,1)没有出现在图表中,但(-2,1)没有出现在图表中。

    Review
    ::回顾

    Graph the following logarithmic functions without using a calculator. State the equation of the asymptote, the domain and the range of each function.
    ::如下的对数函数图解,不使用计算器。请说明无线方程式的方程、域和每个函数的范围。

    1. y = log 5 x
      ::y=log5x
    2. y = log 2 ( x + 1 )
      ::y=log2( x+1)
    3. y = log ( x ) 4
      ::y=log(x)- 4
    4. y = log 1 3 ( x 1 ) + 3
      ::y=log13(x- 1)+3
    5. y = log 1 2 ( x + 3 ) 5
      ::ylog12( x+3) - 5
    6. y = log 4 ( 2 x ) + 2
      ::y=log4( 2- x)+2

    Graph the following logarithmic functions using your graphing calculator.
    ::用您的图形计算计算器绘制对数函数之后的对数函数。

    1. y = ln ( x + 6 ) 1
      ::y=ln( x+6)- 1
    2. y = ln ( x 1 ) + 2
      ::yln(x- 1)+2
    3. y = log ( 1 x ) + 3
      ::y=log( 1- x)+3
    4. y = log ( x + 2 ) 4
      ::y=log( x+2) - 4
    5. How would you graph y = log 4 x on the graphing calculator? Graph the function.
      ::您如何在图形化计算器上绘制 y=log4x 的图形? 图形化函数 。
    6. Graph y = log 3 4 x on the graphing calculator.
      ::图解计算器上的 y=log34x。
    7. Is (3, 8) on the graph of y = log 3 ( 2 x 3 ) + 7 ?
      ::y=log3&(2x-3)+7的图中是否(3,8)?
    8. Is (9, -2) on the graph of y = log 1 4 ( x 5 ) ?
      ::y=log14(x-5)的图表上是否(9,2)?
    9. Is (4, 5) on the graph of y = 5 log 2 ( 8 x ) ?
      ::y=5log2(8-x)的图上是否有(4,5)?

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。