Section outline

  • Your friend Robbie works as a server at a pizza parlor. You and two of your friends go to the restaurant and order a pizza. You ask Robbie to bring you separate checks so you can split the cost of the pizza. Instead of bringing you three checks, Robbie brings you one with the total log 3 162 log 3 2 . "This is how much each of you owes," he says as he drops the bill on the table. How much do each of you owe?
    ::你的朋友Robbie在一家比萨饼店当服务器。你和两个朋友去餐厅订购比萨。你让Robbie给你单独支票,这样你就可以分担比萨饼的费用。Robbie给你一张支票,而不是给你三份支票,而给你一张,总账数是3162-log3/2。“这是你们每人欠的多少钱,”他说,他把帐单扔在桌子上。你们每人欠多少钱?

    Product and Quotient Properties of Logarithms
    ::对数的值属性和引号属性

    Just like exponents, logarithms have special properties, or shortcuts, that can be applied when simplifying expressions. In this lesson, we will address two of these properties.
    ::就像引言者一样,对数有特殊的属性或快捷键,可以在简化表达式时使用。在此课中,我们将处理其中两个属性。

    Let's simplify log b x + log b y .
    ::让我们简化对数bx+logby。

    First, notice that these logs have the same base. If they do not, then the properties do not apply.
    ::首先, 请注意这些日志有相同的基数。 如果它们没有, 那么属性将不适用 。

    log b x = m and log b y = n , then b m = x and b n = y .
    ::对数bx=m和对数by=n,然后bm=x和bn=y。

    Now, multiply the latter two equations together.
    ::现在,将后两个方程乘在一起。

    b m b n = x y b m + n = x y

    ::bmbn=xybm+n=xy

    Recall, that when two exponents with the same base are multiplied, we can add the exponents. Now, reapply the logarithm to this equation.
    ::回顾当两个基数相同的指数乘以时,我们可以添加指数。现在,将对数重新应用到这个方程中。

    b m + n = x y log b x y = m + n
    ::bm+n=xy=xlogb=xy=m+n=m+n=xy=m+n=xy=xlogb=xy=m+n=m+n=m=m+n=xy=m+n=xy=m+n=xy=xy=xy@xy=xy=m@xy=m@xy=m+n

    Recall that m = log b x and n = log b y , therefore log b x y = log b x + log b y .
    ::回顾 m=logbx 和 n=logby, 因此logbxy=logbx+logby 。

    This is the Product Property of Logarithms .
    ::这是对数的产品属性 。

    Now, let's expand log 12 4 y .
    ::现在,让我们扩展日志 124y。

    Applying the Product Property from the previous problem , we have:
    ::在应用上一个问题的产品属性时,我们有:

    log 12 4 y = log 12 4 + log 12 y
    ::对数 12\\\4y=log12}4+log12y

    Finally, let's simplify log 3 15 log 3 5 .
    ::最后,让我们简化对数3+15-log3+5。

    As you might expect, the Quotient Property of Logarithms is log b x y = log b x log b y (proof in the Review section ). Therefore, the answer is:
    ::正如你可能预计的那样,对数的引号属性为logbxy=logbx-logby(在审查部分中为校验)。

    log 3 15 log 3 5 = log 3 15 5 = log 3 3 = 1

    ::对数 3\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\8\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find the amount that  each of you owes. 
    ::早些时候,有人要求你 找出你们每人欠的金额

    If you rewrite log 3 162 log 3 2 as log 3 162 2 , you get log 3 81 .
    ::如果您重写日志3162- log32为日志31622, 您将得到日志381 。

    3 4 = 81 so you each owe $4.
    ::34=81 所以你们每人欠4美元

    Example 2
    ::例2

    Simplify the following expression:  log 7 8 + log 7 x 2 + log 7 3 y .
    ::简化以下表达式 : log7+8+log7+x2+log7+3y 。

    Combine all the logs together using the Product Property.
    ::使用产品属性将所有日志合并在一起。

    log 7 8 + log 7 x 2 + log 7 3 y = log 7 8 x 2 3 y = log 7 24 x 2 y

    ::对数 7\\\ 8+log7\\ x2+log7\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    Example 3
    ::例3

    Simplify the following expression:  log y log 20 + log 8 x .
    ::简化以下表达式: logy-log20+log8x。

     Use both the Product and Quotient Property to condense.
    ::使用产品和数字属性来压缩。

    log y log 20 + log 8 x = log y 20 8 x = log 2 x y 5

    ::logy_log_log_20+log_8x=logy20_8x=log_2xy5

    Example 4
    ::例4

    Simplify the following expression:  log 2 32 log 2 z .
    ::简化以下表达式: log232- log2z。

    Be careful; you do not have to use either rule here, just the definition of a logarithm.
    ::注意; 这里不需要使用任何规则, 只需使用对数定义 。

    log 2 32 log 2 z = 5 log 2 z

    ::log2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    Example 5
    ::例5

    Simplify the following expression:  log 8 16 x y 2 .
    ::简化以下表达式 : log8\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    When expanding a log, do the division first and then break the numerator apart further.
    ::当扩展日志时, 请先执行分区, 然后再进一步拆分分子数 。

    log 8 16 x y 2 = log 8 16 x log 8 y 2 = log 8 16 + log 8 x log 8 y 2 = 4 3 + log 8 x log 8 y 2

    ::log8\\\ 16xy2 = log8\\ 16x- log8\\\ y2 = log8\ 16+ log8\\ x- log8\\ log8\\ y2 = 43+ log8\ x- log8\ y2

    To determine log 8 16 , use the definition and powers of 2: 8 n = 16 2 3 n = 2 4 3 n = 4 n = 4 3 .
    ::为确定log816, 使用定义和权限为 2: 8n=1623n=243n=4n=43。

    Review
    ::回顾

    Simplify the following logarithmic expressions.
    ::简化以下对数表达式。

    1. log 3 6 + log 3 y log 3 4
      ::对数 3\\\ 6+log3\ y- log3\ 4
    2. log 12 log x + log y 2
      ::log_log_x+logy2
    3. log 6 x 2 log 6 x log 6 y
      ::对数 6\\\ x2 - log6\\ x- log6\\ y
    4. ln 8 + ln 6 ln 12
      ::In8+ln_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
    5. ln 7 ln 14 + ln 10
      ::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}... {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}... {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}... {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}... {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}...
    6. log 11 22 + log 11 5 log 11 55
      ::log11\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    Expand the following logarithmic functions.
    ::展开以下对数函数。

    1. log 6 ( 5 x )
      ::对数 6\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
    2. log 3 ( a b c )
      ::对数3(abc)
    3. log ( a 2 b )
      ::对数(a2b)
    4. log 9 ( x y 5 )
      ::对数 9(xy5)
    5. log ( 2 x y )
      ::对数( 2xy)
    6. log ( 8 x 2 15 )
      ::log (8x215)
    7. log 4 ( 5 9 y )
      ::对数 4( 59y)
    8. Write an algebraic proof of the Quotient Property. Start with the expression log a x log a y and the equations log a x = m and log a y = n in your proof. Refer to the proof of the Product Property in the first practice problem  as a guide for your proof.
      ::写入引用属性的代数证明。 以表达式logax- logay 和公式logax=m 和logay=n 开始。 请参考第一个练习问题中的产品属性证明作为证明指南。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。