Section outline

  • The hypotenuse of a right triangle has a length of log 3 27 8 . How long is the triangle's hypotenuse?
    ::右三角形的下限长度为 log3 278. 三角形的下限持续多久?

    Power Property
    ::电力产权

    The last property of logs is the Power Property .
    ::原木的最后一项财产是电力财产。

    log b x = y
    ::对数bx=y

    Using the definition of a log, we have b y = x . Now, raise both sides to the n power.
    ::使用日志的定义, 我们有 by=x 。 现在, 将两边都提升到 n权力 。

    ( b y ) n = x n b n y = x n

    :sadn)n=xnbny=xn)

    Let’s convert this back to a log with base b , log b x n = n y . Substituting for y , we have log b x n = n log b x .
    ::让我们将此转换为 b, logb_xn=ny 的日志。 替换 y, 我们有logb_xn=nlogb_x 。

    Therefore, the Power Property says that if there is an exponent within a logarithm, we can pull it out in front of the logarithm.
    ::因此,电力财产公司说,如果在对数内有一个推算符,我们可以在对数前把它拉出来。

    Let's u se the Power Property to expand the following  logarithms.
    ::让我们利用电力财产来扩大以下对数。

    1. log 6 17 x 5
      ::对数 6\\\\\17x5

    To expand this log, we need to use the Product Property and the Power Property.
    ::为了扩大这一日志,我们需要使用产品产权和电力产权。

    log 6 17 x 5 = log 6 17 + log 6 x 5 = log 6 17 + 5 log 6 x

    ::对数 6\\\ 17x5=log6\\ 17+log6\\\ x5=log6\\ 17+5log6\ xx

    1. ln ( 2 x y 3 ) 4
      ::In( 2xy3) 4

    We will need to use all three properties to expand this problem. Because the expression within the natural log is in parenthesis, start with moving the 4 t h power to the front of the log.
    ::我们需要使用所有三个属性来扩大这个问题。 因为自然日志中的表达方式在括号中, 开始将第四电源移到日志前端 。

    ln ( 2 x y 3 ) 4 = 4 ln 2 x y 3 = 4 ( ln 2 x ln y 3 ) = 4 ( ln 2 + ln x 3 ln y ) = 4 ln 2 + 4 ln x 12 ln y

    ::In( 2xy3) 4= 4ln2xy3= 4( ln2x- ln3) = 4( ln2+lnx- 3ln) = 4ln2+4ln1x-12ln

    Depending on how your teacher would like your answer, you can evaluate 4 ln 2 2.77 , making the final answer 2.77 + 4 ln x 12 ln y .
    ::取决于您的老师对您答案的满意程度, 您可以评估 4ln22. 77, 得出最后答案 2. 77+4lnx- 12lny 。

    Now, let's condense log 9 4 log 5 4 log x + 2 log 7 + 2 log y .
    ::现在,让我们来压缩对数\\\\4log\5 -4log\5\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    This is the opposite of the previous two problems . Start with the Power Property.
    ::这与前两个问题正好相反。 从电力财产开始。

    log 9 4 log 5 4 log x + 2 log 7 + 2 log y log 9 log 5 4 log x 4 + log 7 2 + log y 2

    ::\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\8\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以\\\\\\\\\\\\\\\\\\\

    Now, start changing things to division and multiplication within one log.
    ::现在,开始把事情改变成一个日志内的分割和乘法。

    log 9 7 2 y 2 5 4 x 4
    ::log=% =% =% =% =% =% =% =% =% =% =% =% =% =% =% =% =% =% =% =% =% =% =% =% =% =%

    Lastly, combine like terms.
    ::最后,将类似术语结合起来。

    log 441 y 2 625 x 4
    ::log441y2625x4

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find the length of  the triangle's hypotenuse. 
    ::早些时候,有人要求你 找到三角形的下垂长度

    We can rewrite log 3 27 8 and 8 log 3 27 and solve.
    ::我们可以重写对数3278和8log327 并解决。

    8 log 3 27 = 8 3 = 24

    ::8log327=83=24

    Therefore, the triangle's hypotenuse is 24 units long.
    ::因此三角形的下限是24单位长

    Example 2
    ::例2

    Expand the following expression:  ln x 3 .
    ::展开以下表达式: Inx3 。

    The only thing to do here is apply the Power Property: 3 ln x .
    ::这里唯一需要做的是应用电力财产:3lnx。

    Example 3
    ::例3

    Expand the following expression:  log 16 x 2 y 32 z 5 .
    ::展开以下表达式: log16\\ x2y32z5。

    Let’s start with using the Quotient Property.
    ::让我们从引用属性开始。

    log 16 x 2 y 32 z 5 = log 16 x 2 y log 16 32 z 5

    ::对数 16\\ x2y32z5=log16\ x2y-log16\\\32z5

    Now, apply the Product Property, followed by the Power Property.
    ::现在,应用产品产权,然后是电力产权。

    = log 16 x 2 + log 16 y ( log 16 32 + log 16 z 5 ) = 2 log 16 x + log 16 y 5 4 5 log 16 z

    ::=log16_x2+log16_y_(log16_32+log16_z5)=2log16_x+log16_y_54_5log16_z

    Simplify log 16 32 16 n = 32 2 4 n = 2 5 and solve for n . Also, notice that we put parenthesis around the second log once it was expanded to ensure that the z 5 would also be subtracted (because it was in the denominator of the original expression).
    ::简化对数 163216n=3224n=25 并解决n. 另外,请注意,在扩展第二个日志以确保Z5也减去后,我们将在第二个日志上加括号(因为它是原表达式的分母)。

    Example 4
    ::例4

    Expand the following expression:  log ( 5 c 4 ) 2 .
    ::展开以下表达式: log( 5c4) 2。

    For this problem, you will need to apply the Power Property twice.
    ::对于这个问题,您需要两次使用电力财产。

    log ( 5 c 4 ) 2 = 2 log 5 c 4 = 2 ( log 5 + log c 4 ) = 2 ( log 5 + 4 log c ) = 2 log 5 + 8 log c

    ::log*5c4=2log*5c4=2(log*5+log*4)=2(log*5+4log*4c)=2log*5+8log*c)=2log*5+8log*c

    Important Note: You can write this particular log several different ways. Equivalent logs are: log 25 + 8 log c , log 25 + log c 8 and log 25 c 8 . Because of these properties, there are several different ways to write one logarithm.
    ::重要注意 : 您可以以几种不同的方式写入此特定日志 。 等值日志是: log\ 25+8logc, log\ 25+logc8 和 log\ 25c8. 由于这些属性, 有几种不同的方式来写入一个对数 。

    Example 5
    ::例5

    Condense into one log: ln 5 7 ln x 4 + 2 ln y .
    ::整合成一个日志 : 5 - 7ln x4+2ln y 。

    To condense this expression into one log, you will need to use all three properties.
    ::要将这个表达式压缩成一个日志, 您需要使用所有三个属性 。

    ln 5 7 ln x 4 + 2 ln y = ln 5 ln x 28 + ln y 2 = ln 5 y 2 x 28

    ::5 - 7ln_ x4+2ln_ y=ln_ 5 - ln_ x28+ln_ y2=ln_ 5y2x28

    Important Note: If the problem was ln 5 ( 7 ln x 4 + 2 ln y ) , then the answer would have been ln 5 x 28 y 2 . But, because there are no parentheses, the y 2 is in the numerator.
    ::重要注意: 如果问题在于 In5-( 7lnx4+2lny) , 那么答案应该是 nn5x28y2。 但是, 因为没有括号, y2 在数字中 。

    Review
    ::回顾

    Expand the following logarithmic expressions.
    ::展开以下对数表达式。

    1. log 7 y 2
      ::对数 7\\\y2
    2. log 12 5 z 2
      ::对数 12\\\\5z2
    3. log 4 ( 9 x ) 3
      ::对数 4( 9x) 3
    4. log ( 3 x y ) 2
      ::log *( 3xy) 2
    5. log 8 x 3 y 2 z 4
      ::对数 8x3y2z4
    6. log 5 ( 25 x 4 y ) 2
      ::对数 5( 25x4y) 2
    7. ln ( 6 x y 3 ) 2
      :sad6xy3) -2
    8. ln ( e 5 x 2 y 3 ) 6
      ::内(e5x-2y3)6

    Condense the following logarithmic expressions.
    ::包含以下对数表达式 。

    1. 6 log x
      ::6logx
    2. 2 log 6 x + 5 log 6 y
      ::2log6x+5log6y
    3. 3 ( log x log y )
      ::3(logx-logy)
    4. 1 2 log ( x + 1 ) 3 log y
      ::12log( x+1) - 3log
    5. 4 log 2 y + 1 3 log 2 x 3
      ::4log2y+13log2x3
    6. 1 5 [ 10 log 2 ( x 3 ) + log 2 32 log 2 y ]
      ::15[10log2(x-3)+log232-log2
    7. 4 [ 1 2 log 3 y 1 3 log 3 x log 3 z ]
      ::4[12log3]-13log3]-x-log3z]

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。