Section outline

  • We have investigated rational functions in prior lessons, and described them loosely as functions that involve the division of .

    Can the answers to a rational function be found by graphing? How would you go about graphing them?
    ::可以通过图形化找到理性函数的答案吗? 你会如何用图表化它们呢 ?

    Graphing Rational Functions
    ::图形推理函数

    Any function that has the form
    ::带有窗体的任何函数

    f ( x ) = P ( x ) Q ( x )

    :sadfx)=P(x)Q(x)

    where P ( x ) and Q ( x ) are polynomials and Q ( x ) 0 , is called a rational function . The domain of any rational function includes all real numbers x that do not make the denominator zero.
    ::P(x) 和 Q(x) 是多元函数 和 Q(x) Q(x) =0 被称作合理函数 。 任何合理函数的域包括所有不使分母为零的真实数字 x 。

    Just like polynomials, rational functions can be graphed using transformations . The main point to remember for graphing rational functions by transformations is that some transformations change the asymptotes while others do not.
    ::和多面函数一样, 理性函数可以用变换来图形化 。 在用变换来图形化理性函数时, 需要记住的要点是, 有些变换会改变无符号, 而另一些变换则不会改变 。

    • r ( x ) + c is a vertical shift which moves each horizontal asymptote up c units (or down if c < 0 ).
      ::r( x) +c 是一个垂直移动, 将每个水平的单点向上移动 c 单位( 如果 c< 0 ) , 或向下移动 。
    • r ( x c ) is a horizontal shift which moves each vertical asymptote right c units (or left if c < 0 ).
      ::r( x- c) 是一个水平移动, 移动每个垂直的单点向右 C 单位( 或如果 c< 0 则向左 ) 。
    • a r ( x ) is a vertical stretch which moves by a multiple of a (so this moves the horizontal asymptote closer to the x axis if a < 0 .
      ::ar(x) 是一个垂直伸展, 以一个数的倍移动( 因此, 如果是 < 0 , 则将水平同量移动到更接近 x- 轴处 ) 。
    • r ( a x ) is a horizontal compression which moves the closer to y axis by a factor of 1 a .
      ::r(ax) 是水平压缩, 将接近 y- 轴移动到 1a 的系数。
    • r ( x ) is a reflection about the y axis. All vertical asymptotes are also reflected.
      :sad- x) 是 Y - 轴的反射。 所有垂直的微粒也均被反射 。
    • r ( x ) is a reflection about the x axis. All horizontal asymptotes are also reflected. 
      ::~r(x) 是 X - 轴的反射。 所有水平的单位数也都被反射 。

    Examples
    ::实例

    Example 1
    ::例1

    What is the domain of f ( x ) = 1 x ?
    ::f( x) = 1x 的域是什么 ?

    Notice that the only input that can make the denominator equal to zero is x = 0 . Thus we say that the domain of f ( x ) is all real numbers except x = 0 . When looking at the graph of f ( x ) = 1 x  (see Example 2 below), you will notice that as x approaches 0 from the left, f ( x ) decreases. But when x approaches 0 from the right, f ( x ) increases. Because of this behavior, the x axis and y axis play the role of horizontal and vertical asymptotes , respectively.
    ::注意使分母等于零的唯一输入为x=0。 因此, 我们说 f( x) 域是除 x=0 外的所有真实数字。 当查看 f( x) = 1x 的图形( 见下文示例 2) 时, 您会注意到, 当 x 向左移动 0 时, f( x) 就会减少。 但是当 x 向右移动 0 时, f( x) 就会增加 。 由于此行为, x- 轴 和 y- 轴 将分别发挥水平和垂直的同量的作用 。

    Example 2
    ::例2

    Graph the function f ( x ) = 1 x .
    ::函数 f( x) = 1x 的图形 。

    We know that the domain of f ( x ) is all real numbers excluding x = 0 . The vertical line x = 0 is called a vertical asymptote. For x < 0 , f ( x ) < 0 , and for x > 0 , f ( x ) > 0 . Plotting a few sample points should indicate the shape of f ( x ) .
    ::我们知道f(x) 域是除x=0以外的所有真实数字。 垂直线x=0被称为垂直静态。 对于 x<0,f(x) <0, 和 x>0,f(x)>0, 和 x>0, 垂直线x=0, 垂直线x=0 被称为垂直静态。 绘制几个样本点时应该显示 f(x) 的形状 。

    x 1 2 10 1 5 1 10 1 1 2 1 10 2 10 f ( x ) = 1 x 1 1 2 1 10 5 10 1 2 10 1 2 1 10

    ::x121015110-1-1-1-12-110-2-10f-10f(x)=1x1111110510-1-2-10-12-110

    lesson content

    Example 3
    ::例3

    A rational function r ( x ) is shown in the figure below.
    ::合理函数 r(x) 如下图所示。

    lesson content

    Use the graph of r ( x ) to sketch graphs of:
    ::使用 r( x) 的 r 图形来绘制 :

    a.  r ( x ) 3
    ::a. r(x)-3

    The horizontal asymptote moves down by three units.
    ::水平向下移动三个单位 。

    b.  r ( x )
    ::b.-r(x)

    The function is reflected about the  x axis so the horizontal asymptote is also reflected.
    ::函数在 x - 轴上被反映,所以水平静态也得到反映。

    c.  r ( 3 x )
    ::c. r(3-x)

    r ( 3 x ) = r ( ( x 3 ) ) . First, graph  r ( x ) , and then shift that graph three units to the right to get  r ( ( x 3 ) ) . The new vertical asymptote is  x = 1 .
    ::r( 3- x) =r (- (x- 3) 。 首先, 图形 r (- x) , 然后将图形 3 单位移动到右侧以获得 r (- (x- 3) 。 新的垂直静态为 x= 1 。

    Example 4
    ::例4

    For the following rational function, determine the domain, the asymptotes, the  x  and  y intercepts and then sketch the graph.
    ::对于以下的理性函数,请确定域、小数、 x- 和 y- interviews,然后绘制图表。

    f ( x ) = x + 2 x 2 + 1
    :sadxx) =x+2x2+1

    To identify domain limitations, find value(s) which make the denominator = 0: In this case, where x 2 , the only variable in the denominator, is added to 0 , any value for x will be positive. So the domain is all real numbers.
    ::为了确定域限, 找到使分母= 0的值 : 在这种情况下, x2 分母中唯一的变量被添加到 0, x 的任何值都将是正值。 因此, 域是所有真实数字 。

    With no limitations on the domain, there are no vertical asymptotes.
    ::在对域没有限制的情况下,不存在垂直的零星状态。

    The horizontal asymptote: y = 0 becomes apparent as x becomes huge and the "+2" and "+1" no longer have an effect, giving: f ( x ) = x x 2 f ( x ) = 1 x f ( x ) = 0 So the horizontal asymptote is 0
    ::水平线状数 : y=0 当 x 变大, "+2" 和 "+1" 不再具有效果时, y=0 变得明显, 也就是说: f( x) =xx2\f( x) =1xx}f( x) =1x*f( x) =0 水平线状数为 0

    Example 5
    ::例5

    For the following  rational function, determine the domain, the asymptotes, the x and y intercepts and then sketch the graph.
    ::对于以下的理性函数,确定域、小数、轴-和-截取,然后绘制图表。

    f ( x ) = 9 x 2 4 3 x + 2
    :sadxx)=9x2 - 43x+2

    For this problem, the first step is to recognize the difference of squares in the numerator: 9 x 2 4 which factors easily into ( 3 x 2 ) ( 3 x + 2 )
    ::对于这一问题,第一步是承认分子中的方形差异:9x2-4,其因素很容易进入(3x-2)(3x+2)

    This gives: f ( x ) = ( 3 x 2 ) ( 3 x + 2 ) ( 3 x + 2 )
    ::这给出了 : f( x) = (3x-2) (3x+2) (3x+2) (3x+2) 。

    NOTE: Although we can cancel the (3x + 2) to evaluate the general behavior of the function, giving: f ( x ) = 3 x + 2 (which is just a line), that does not change the fact that a zero in the denominator of the equation is undefined , it just means that the rest of the function behaves like y = 3 x 2 .
    ::注:虽然我们可以取消用于评价函数一般行为的3x+2, 给出: f( x)=3x+2( 这只是一行), 这并不改变方程式分母中零的未定义这一事实, 但它只是意味着函数的其余部分行为像 y=3x-2 。

    To identify domain limitations, find value(s) which make the denominator = 0: In this case: 3 x + 2 = 0 3 x = 2 x = 2 3 which means the domain cannot include a value of -2/3 for x : x 2 3
    ::为了确定域限, 找到使分母= 0 的值 : 在此情况下 : 3x+2= 0}3x2x= 03x 2xx 23 表示域不能包含 x: x\ 23 的 - 2/3 值 。

    Since the equation behaves as a line with a single non-existent value, there is no vertical asymptote.
    ::由于方程式行为是一行单一无值的直线,因此不存在垂直零星现象。

    As x gets huge, we end up with f ( x ) = 9 x 2 3 x f ( x ) = 3 x which is a slant asymptote that parallels the line of the function!
    ::当 x 变大时, 我们的结局是 f( x) = 9x23xx}f( x) = 3x, 这是一种与函数线平行的倾斜无状物 !

    Review
    ::回顾

    1. What is the hole in the graph of a function called?
      ::函数图形中的空洞叫什么?
    2. How are polynomial graphs different from rational function graphs?
      ::多元图形与理性函数图形有何不同?
    3. What does the graph of the simplified function that is continuous everywhere not have?
      ::无处不在的连续的简化函数图是什么?
    4. Why can't rational function be simplified to determine the domain?
      ::为什么不能简化理性功能来确定域名?
    5. Put the following steps into the correct order for graphing rational functions. a) Find all asymptotes. b) Sketch a smooth graph based on the information. c) Factor numerator and denominator completely and put in lowest terms. Identify any holes. d) Determine the behavior around the vertical asymptotes using a table of signs. e) Find all intercepts. f) Find the places where the function crosses the horizontal asymptote/oblique asymptote.
      ::将以下步骤置于绘制理性函数图表的正确顺序中 。 a) 查找所有无线点 。 b) 根据信息绘制一个平滑的图表 。 c) 参数数和分母完全完整,并以最低值表示。 识别任何洞 。 d) 使用符号表确定垂直静点周围的行为 。 e) 查找所有拦截 。 f) 查找函数横线线线线数/单线点的交叉点 。
    6. Simplify 6 x 2 + 21 x + 9 4 x 2 1
      ::简化 6x2+21x+94x2- 1
    7. Given: y = x 2 + 2 x 8 x . Find the intercepts, any asymptotes, and identify end behavior.
      ::给定值 : y=x2+2x-8x。 查找拦截、 任何微量, 并识别最终行为 。
    8. Graph the equation and state the domain.
      ::绘制方程图并标出域。

    Simplify each function in questions 9 and 10 and state any value(s) of x that make the function undefined.
    ::简化问题9和问题10中的每一项功能,并说明使函数未定义的 x 的任何值。

    1. f ( x ) = 3 x x 2 3 x
      :sadxx)=3-x22-3x
    2. f ( x ) = x 2 2 x 15 x 5
      :sadxx) =x2-2x-15x-5

    For each function in questions 11-13, identify points of discontinuity and the form of the graph of the simplified function (linear or quadratic).
    ::对于问题11-13中的每个函数,指明不连续点和简化函数(线性或二次函数)图的形式。

    1. f ( x ) = 2 x 2 + x 1 2 x 1
      :sadxx) = 2x2+x- 12x- 1
    2. f ( x ) = 2 x 3 + 9 x 2 10 x + 3 x 3
      :sadxx) 2x3+9x2-10x+3x-3
    3. f ( x ) = x 3 13 x 12 x 2 3 x 4
      :sadx) =x3-13x-12x2-3x-4
    4. Write a quadratic function where the domain cannot include 5 or -5, and the graph has two asymptotes
      ::写入一个二次函数, 域域不能包括 5 或 5 或 5 , 而图形有两个小数
    5. Simplify, identify the asymptotes and intercepts, and sketch the graph of f ( x ) = x 3 64 x x 2 16
      ::简化、识别小行星和拦截物,绘制f(x)=x3-64x2-16的图表图

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。