章节大纲

  • "I'm thinking of a number," you tell your best friend. "The number I'm thinking of satisfies the equation log 10 x 2 log x = 3 ." What number are you thinking of?
    ::“我在想一个数字,”你告诉你最好的朋友。 “我想达到公式的数值是: olog_10x2-log_x=3。”你想的号码是多少?

    Solving Logarithm Equations
    ::解析对数等数

    A logarithmic equation has the variable within the log. To solve a logarithmic equation, you will need to use the inverse property, b log b x = x , to cancel out the log.
    ::对数方程式在日志中包含变量。要解析对数方程式, 您需要使用反属性( 博客bx=x) 来取消日志 。

    Let's solve the following  logarithmic equations.
    ::让我们解决以下对数方程。

    1. log 2 ( x + 5 ) = 9
      ::log2(x+5)=9

    There are two different ways to solve this equation. The first is to use the definition of a logarithm.
    ::解析此方程式有两种不同的方法。 第一个是使用对数定义 。

    log 2 ( x + 5 ) = 9 2 9 = x + 5 512 = x + 5 507 = x

    ::log2(x+5)=929=x+5512=x+5507=x

    The second way to solve this equation is to put everything into the exponent of a 2, and then use the inverse property.
    ::解决这个方程式的第二个方法是 把一切 都放入二号的引号中 然后使用反向属性

    2 log 2 ( x + 5 ) = 2 9 x + 5 = 512 x = 507

    ::2log2(x+5)=29x+5=512x=507

    Make sure to check your answers for logarithmic equations. There can be times when you get an extraneous solution.To check, plug in 507 for x  :   log 2 ( 507 + 5 ) = 9 log 2 512 = 9
    ::确保检查对数方程式的解答。 您可以得到一个不相干的解答。 要检查, 在 507 中插入 x: log2\\\ (507+5) = 9}log2\\\\\ 512=9 。

    1. 3 ln ( x ) 5 = 10
      ::3ln( - x) - 5=10

    First, add 5 to both sides and then divide by 3 to isolate the natural log.
    ::首先,在两边加上5,然后除以3,分离自然原木。

    3 ln ( x ) 5 = 10 3 ln ( x ) = 15 ln ( x ) = 5

    ::3ln( - x) -5=103ln( - x)=15ln( - x)=5

    Recall that the inverse of the natural log is the natural number. Therefore, everything needs to be put into the exponent of e in order to get rid of the log.
    ::回顾自然日志的反面是自然数。 因此,所有东西都需要放在e的引号中, 才能摆脱日志 。

    e ln ( x ) = e 5 x = e 5 x = e 5 148.41

    ::eln(-x) =e5-x=e5x=e5x* e55 148.41

    Checking the answer, we have 3 ln ( ( e 5 ) ) 5 = 10 3 ln e 5 5 = 10 3 5 5 = 10
    ::在检查答案时,我们有 3ln(-(-))-5=103ln5-5=1035-5=1035-5=10

    1. log 5 x + log ( x 1 ) = 2
      ::对数5x+log(x-1)=2

    Condense the left-hand side using the Product Property.
    ::使用产品属性,使左手侧保持稳健。

    log 5 x + log ( x 1 ) = 2 log [ 5 x ( x 1 ) ] = 2 log ( 5 x 2 5 x ) = 2

    ::对数5x+log(x-1)=2log[5x(x-1)]=2log(5x2-5x)=2

    Now, put everything in the exponent of 10 and solve for x .
    ::现在,把所有的东西放在10的指数 并解决x。

    10 log ( 5 x 2 5 x ) = 10 2 5 x 2 5 x = 100 5 x 2 5 x 100 = 0 x 2 x 20 = 0 ( x 5 ) ( x + 4 ) = 0 x = 5 , 4

    ::10log( 5x2 - 5x) =1025x2 - 5x=1005x2 - 5x - 100=0x2 - x-20=0( x5) (x+4) =0x=5, - 4

    Now, check both answers.
    ::现在,检查两个答案。

    log 5 ( 5 ) + log ( 5 1 ) = 2 log 5 ( 4 ) + log ( ( 4 ) 1 ) = 2 log 25 + log 4 = 2   log ( 20 ) + log ( 5 ) = 2 log 100 = 2

    ::5(5)+log(5-1)=2log5(-4)+log((-4)-1)=2log25+log4=2log(-20)+log(-5)=2log100=2

    -4 is an extraneous solution. In the step log ( 20 ) + log ( 5 ) = 2 , we cannot take the log of a negative number, therefore -4 is not a solution. 5 is the only solution.
    ::4 是一个不相干的解决办法。 在步数 log( - 20) +log( - 5) = 2 中, 我们无法使用负数的日志, 因此 - 4 不是一个解决办法 。 5 是唯一的解决办法 。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to determine what number you are thinking of if the number satisfies the equation  log 10 x 2 log x = 3 .
    ::早些时候,有人要求您确定您在考虑的数值,如果该数值符合等式的对数 10x2-logx=3。

    We can rewrite log 10 x 2 log x = 3 as log 10 x 2 x = 3 and solve for x .
    ::我们可以重写对数10x2-logx=3 的对数10x2x=3, 并解决 x 。

    log 10 x 2 x = 3 log 10 x = 3 10 log 10 x = 10 3 10 x = 1000 x = 100

    ::log10x2x=3log_10x=310log_10x=10310x=1000x=100

    Therefore, the number you are thinking of is 100.
    ::因此,你所想到的数字是100。

    Example 2
    ::例2

    Solve:  9 + 2 log 3 x = 23 .
    ::解决时间: 9+2log3x=23。

    Isolate the log and put everything in the exponent of 3.
    ::把日志分离出来 把所有东西都放进三号计数器里

    9 + 2 log 3 x = 23 2 log 3 x = 14 log 3 x = 7 x = 3 7 = 2187

    ::9+2log3x=232log3x=14log3x7x=37=2187

    Example 3
    ::例3

    Solve:  ln ( x 1 ) ln ( x + 1 ) = 8 .
    ::溶解: In(x- 1)-ln(x+1)=8。

    Condense the left-hand side using the Quotient Rule and put everything in the exponent of e .
    ::使用“引号规则”使左手侧松绑,将一切置于e的引文中。

    ln ( x 1 ) ln ( x + 1 ) = 8 ln ( x 1 x + 1 ) = 8 x 1 x + 1 = e 8 x 1 = ( x + 1 ) e 8 x 1 = x e 8 + e 8 x x e 8 = 1 + e 8 x ( 1 e 8 ) = 1 + e 8 x = 1 + e 8 1 e 8 1.0007

    ::In(x- 1)- ln(x+1)=8ln(x-1x+1)=8x-1x+1=8x-1=e8x-1=(x+1)-e8x- 1=xe8+e8x-xe8=1+e8x(1-e8)=1+e8x=1+e8x=1+e8x=1+e81-e8===1.007

    Checking our answer, we get ln ( 1.0007 1 ) ln ( 1.0007 + 1 ) = 8 , which does not work because you cannot take the log of a negative number . Therefore, there is no solution for this equation.
    ::正在检查我们的答案, 我们得到 In (- 1.0007- 1)- ln (- 1.0007+1) =8, 无效, 因为无法使用负数的日志 。 因此, 此等式没有解决方案 。

    Example 4
    ::例4

    Solve:  1 2 log 5 ( 2 x + 5 ) = 2 .
    ::解决时间: 12log5( 2x+5) = 2 。

    Multiply both sides by 2 and put everything in the exponent of a 5.
    ::将两边乘以2 然后把所有东西都放进5号的指数里

    1 2 log 5 ( 2 x + 5 ) = 2 log 5 ( 2 x + 5 ) = 4 5 log 5 ( 2 x + 5 ) = 5 4 2 x + 5 = 625 2 x = 620 x = 310

    ::12log5(2x+5)=2log5(2x+5)=45log5(2x+5)=542x+5=6252x=620x=310

    Review
    ::回顾

    Use properties of logarithms and a calculator to solve the following equations for x . Round answers to three decimal places and check for extraneous solutions.
    ::使用对数属性和计算器解析 x. 的下列方程式。 对小数点后三个位数的圆形答案, 并检查外部解决方案 。

    1. log 2 x = 15
      ::对数 2x=15
    2. log 12 x = 2.5
      ::对数 12x=2.5
    3. log 9 ( x 5 ) = 2
      ::对数 9(x- 5)=2
    4. log 7 ( 2 x + 3 ) = 3
      ::对数 7( 2x+3)=3
    5. 8 ln ( 3 x ) = 5
      ::8ln( 3- x)=5
    6. 4 log 3 3 x log 3 x = 5
      ::4log33x-log3x=5
    7. log ( x + 5 ) + log x = log 14
      :伤心x+5)+logx=log14
    8. 2 ln x ln x = 0
      ::2lnxx- lnxx=0
    9. 3 log 3 ( x 5 ) = 3
      ::3log3(x-5)=3
    10. 2 3 log 3 x = 2
      ::23log3x=2
    11. 5 log x 2 3 log 1 x = log 8
      ::5log_x2 - 3log_ 1x=log_ 8
    12. 2 ln x e + 2 ln x = 10
      ::2nxe+2-lnx=10
    13. 2 log 6 x + 1 = log 6 ( 5 x + 4 )
      ::2log6_x+1=log6(5x+4)
    14. 2 log 1 2 x + 2 = log 1 2 ( x + 10 )
      ::2log12x+2=log12(x+10)
    15. 3 log 2 3 x log 2 3 27 = log 2 3 8
      ::3log23\x-log23\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\8\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\8\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。