Section outline

  • The volume of a cylinder varies jointly with the square of the radius and the height. If the volume of the cylinder is 64   units 3 and radius is 4  units , what is the height of the cylinder?
    ::圆柱体的体积与半径的正方形和高度不同。如果圆柱体的体积为64个单位3,半径为4个单位,圆柱体的高度是多少?

    Joint Variation
    ::联合变动

    The last type of variation is called joint variation . This type of variation involves three variables, usually x , y and z . For example, in geometry, the volume of a cylinder varies jointly with the square of the radius and the height. In this equation the constant of variation is π , so we have V = π r 2 h . In general, the joint variation equation is z = k x y . Solving for k , we also have k = z x y .
    ::最后一种变异类型称为联合变异。 这种变异类型包含三个变量, 通常是 x,y 和 z。 例如, 在几何学中, 圆柱体的体积与半径的正方形和高度是相异的。 在这个方程中, 变量的常数是 , 所以我们有 Vr2h 。 一般来说, 联合变异方程是 z=kxy 。 k 溶解时, 我们也有 k=zxy 。

    Let's write an equation for the following  relationships.
    ::让我们为以下关系写一个方程式

    1. y varies inversely with the square of x .
      ::y 与 x 平方反向变化。

    y = k x 2
    ::y=kx2 y=kx2

    1. z varies jointly with x and the square root of y .
      ::z 与 x 和 y 的平方根并存。

    z = k x y
    ::z=kxy z=kxy

    1. z  varies directly with x and inversely with y .
      ::z 与 x 直接不同,y 反差。

    z = k x y
    ::z=kxy z=kxy

    Now, let's solve the following problems.
    ::现在,让我们解决以下的问题。

    1. z varies jointly with x and y . If x = 3 , y = 8 , and z = 6 , find the variation equation. Then, find z when x = 2 and y = 10 .
      ::如果 x=3,y=8,z=6,则查找变异方程。然后,在 x=2 和 y=10 时查找z。

    Using the equation when it is solved for k , we have:
    ::当 K 解决时使用方程式, 我们有:

    k = z x y = 6 3 8 = 1 4 , so the equation is z = 1 4 x y .
    ::k=zxy=63_8=14, 方程式为z=14xy。

    When x = 2 and y = 10 , then z = 1 4 2 10 = 5 .
    ::当 x2 和 y= 10, 然后z= 14 210 5 时 。

    1. Geometry Connection The volume of a pyramid varies jointly with the area of the base and the height with a constant of variation of 1 3 . If the volume is 162   u n i t s 3 and the area of the base is 81   u n i t s 2 , find the height.
      ::金字塔的体积与基点面积和高度不尽相同,高度变化不变,为13。 如果体积为162个单位3,基点面积为81个单位2,请找到高度。

    Find the joint variation equation first.
    ::先找到联合变异方程

    V = 1 3   B h
    ::V=13 小时

    Now, substitute in what you know to solve for the height.
    ::现在 代替你所知道的 解决高度问题的方法

    162 = 1 3 81 h 162 = 27   h 6 = h

    ::162=1381h162=27 h6=h

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find  the height of the cylinder. 
    ::早些时候,你被要求 找到圆柱的高度。

    The formula for the volume of a cylinder, V = π r 2 h , is a joint variation equation in which the constant k = π .
    ::圆柱体体积的公式Vr2h是常数 k的组合变方程。

    We can therefore plug in the given values and solve for h , the height.
    ::因此,我们可以插入给定值并解决 h, 高度。

    %5C%5C%0A64%5Cpi%20%3D%2016%5Cpiheart%5C%5C%0A4%20%3D%20h">

    V = π r 2 h 64 π = π 4 2 ( h ) 64 π = 16 π ( h ) 4 = h

    ::Vr2h6442heart6416heart4=h

    Therefore, the cylinder has a height of 4 units.
    ::因此,气瓶的高度为4个单位。

    Example 2
    ::例2

    Write the equation for z , that varies jointly with x and the cube of y and inversely with the square root of w .
    ::写入 z 的方程,该方程与 x 和 y 的立方体相异,与 w 的平方根反差。

    z = k x y 3 w
    ::z z=kxy3w

    Example 3
    ::例3

    z varies jointly with y and x . If x = 25 , z = 10 , and k = 1 5 , find y .
    ::x=25,z=10,k=15,找到y。

    The equation would be z = 1 5 x y . Solving for y , we have:
    ::等式为z=15xy。解决y,我们有:

    10 = 1 5 25 y 10 = 5 y 2 = y

    ::10=1525y10=5y2=y

    Example 4
    ::例4

    Kinetic energy P (the energy something possesses due to being in motion) varies jointly with the mass m (in kilograms) of that object and the square of the velocity v (in meters per seconds). The constant of variation is 1 2 .
    ::动能P(由于运动而拥有的能量)与该物体的质量m(公斤)和速度的正方形(每秒以米计)不同。变化的常数为12。

    Write the equation for kinetic energy.
    ::写动能方程式

    P = 1 2   m v 2
    ::P=12 mv2

     If a car is travelling 104 km/hr and weighs 8800 kg, what is its kinetic energy?
    ::如果一辆汽车每小时行驶104公里,重量8800公斤,其动能是什么?

    The second portion of this problem isn’t so easy because we have to convert the km/hr into meters per second.
    ::这个问题的第二部分并不容易, 因为我们必须将公里/小时转换成每秒的米数。

    104   k m h r h r 3600   s 1000   m k m = 0.44   m s
    ::104公里3600秒1000公里=0.44米

    Now, plug this into the equation from part a.
    ::现在,把这个插进A部分的方程中

    P = 1 2 8800   k g ( 0.44   m s ) 2 = 1955.56   k g m 2 s 2

    ::P=128800 kg__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    Typically, the unit of measurement of kinetic energy is called a joule. A joule is k g m 2 s 2 .
    ::通常,动能测量单位称为焦耳,焦耳为kgm2s2。

    Review
    ::回顾

    For questions 1-5, write an equation that represents relationship between the variables.
    ::对于问题1-5,写一个代表变量之间关系的方程式。

    1. w varies inversely with respect to x and y .
      ::x 和 y 的逆差。
    2. r varies inversely with the square of q .
      ::r 与q平方反差。
    3. z varies jointly with x and y and inversely with w .
      ::z 与 x 和 y 合并变化,与 w 反向变化。
    4. a varies directly with b and inversely with c and the square root of d .
      ::a 与 b 直接不同,与 c 和 d 的平方根相反。
    5. l varies directly with m , and inversely with p .
      ::我与M直接不同,与p相反。

    Write the variation equation and answer the given question in each problem.
    ::写下变异方程并回答每个问题中的问题。

    1. z varies jointly with x and y . If x = 2 , y = 3 and z = 4 , write the variation equation and find z when x = 6 and y = 2 .
      ::如果 x=2,y=3 和 z=4, 则在 x=6 和 y=2 时, 刻写变异方程并找到 z。
    2. z varies jointly with x and y . If x = 5 , y = 1 and z = 10 , write the variation equation and find z when x = 1 2 and y = 7 .
      ::z 与 x 和 y 相异。 如果 x= 5, y 1 和 z= 10, 请写变量方程, 并在 x 12 和 y = 7 时找到 z 。
    3. z varies jointly with x and y . If x = 7 , y = 3 and z = 14 , write the variation equation and find y when z = 8 and x = 3 .
      ::如果 x=7,y=3 和 z14, 请写变量方程, 并在 z8 和 x=3 时查找 y 。
    4. z varies jointly with x and y . If x = 8 , y = 3 and z = 6 , write the variation equation and find x when z = 12 and y = 16 .
      ::z 与 x 和 y 相异。 如果 x= 8,y 3 和 z 6, 则写入变异方程, 并在 z = 12 和 y 16 时找到 x 。
    5. z varies inversely with x and directly y . If x = 4 , y = 48 and z = 2 , write the variation equation and find x when z = 8 and y = 96 .
      ::如果 x=4,y=48 和 z2, 写变量方程式, 然后在 z=8 和 y=96 时找到 x, z=8 和 y=96 。
    6. z varies inversely with x and directly y . If x = 1 2 , y = 5 and z = 20 , write the variation equation and find x when z = 4 and y = 8 .
      ::如果 x=12,y=5 和 z=20, 请写变量方程, 然后在 z4 和 y=8 时找到 x 。

    Solve the following word problems using a variation equation.
    ::使用变异方程式解决以下字词问题 。

    1. If 20 volunteers can wash 100 cars in 2.5 hours, find the constant of variation and find out how many cars 30 volunteers can wash in 3 hours.
      ::如果20名志愿者能在2.5小时内洗100辆汽车,
    2. If 10 students from the environmental club can clean up trash on a 2 mile stretch of road in 1 hour, find the constant of variation and determine how low it will take to clean the same stretch of road if only 8 students show up to help.
      ::如果环境俱乐部的10名学生能在1小时内在2英里长的公路上清理垃圾,
    3. The work W (in joules) done when lifting an object varies jointly with the mass m (in kilograms) of the object and the height h (in meters) that the object is lifted. The work done when a 100 kilogram object is lifted 1.5 meters is 1470 joules. Write an equation that relates W , m , and h . How much work is done when lifting a 150 kilogram object 2 meters?
      ::升起物体时完成的工作 W( 焦耳) 与物体质量m( 公斤) 和物体升起时的高度h( 米) 不同。 当100公斤物体升起1.5米时完成的工作为 1470 焦耳。 写一个与W, m 和 h有关的方程式。 当升起150公斤物体2米时做了多少工作?
    4. The intensity I of a sound (in watts per square meter) varies inversely with the square of the distance d (in meters) from the sound’s source. At a distance of 1.5 meters from the stage, the intensity of the sound at a rock concert is about 9 watts per square meter. Write an equation relating I and d . If you are sitting 10 meters back from the stage, what is the intensity of the sound you hear?
      ::声音的强度I(以每平方米瓦特计)与声音源的距离(以米计)的正方形反差。 在距离舞台1.5米的距离,摇滚音乐会的声音强度约为每平方米9瓦特。写一个与I和d有关的方程式。如果你坐在距离舞台10米的后面,听到的声音的强度是多少?

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。