2.11 多项式的综合除法
Section outline
-
If you have completed the lesson on , you probably know that the problem:
::问题在于:Find the of f ( x ) = 3 x 3 − 2 x 2 + 11 x − 9 x 2 + 2
::查找 f( x) = 3x3- 2x2+11x- 9x2+2could be an excellent reason to groan and grumble due to the long division that would be required.
::这可能是一个极好的理由来呻吟和抱怨,因为需要进行冗长的除法运算。Isn't there a better way?
::有没有更好的办法?Synthetic Division of Polynomials
::多项式的综合除法Synthetic division is an alternative to long division from the previous concept. It can also be used to divide a polynomial by a possible factor , x − k . However, synthetic division cannot be used to divide larger , like quadratics, into another polynomial.
::综合除法是以前概念中长除法的替代方法。它也可以用来用一个多项式除以一个可能的因子,x - k。然而,合成除法不能用于将更大的多项式,比如二次多项式,分解成另一个多项式。Examples
::实例Example 1
::例1Earlier, you were given a question about finding a better way to divide polynomials.
::早些时候,你被问到 如何找到更好的方法 来分裂多种族。If we want to use synthetic division, notice that the factor is not in the form
::如果我们想要使用合成分分法,请注意该因素并非以该形式出现。( x − k ) . Therefore , we need to solve the possible factor for zero to see what the possible solution would be. If x 2 + 2 = 0 , then x = ± i 2 , which can also be expressed as x = + i 2 or x = − i 2 . Therefore, we need to use synthetic division twice because there are two .
:x-k) 因此,我们需要解决零的可能因子, 以便知道什么是可能的解决方案。 如果 x2+2=0, 那么 xi2, 也可以以 xi2 或 x2 表示。 因此, 我们需要使用合成分解两次, 因为有两种 。
To start, put i 2 up in the left-hand corner box.
::首先,把i2放到左手角盒子里When we perform the synthetic division, we get a remainder of − 5 + 5 i 2 .
::当我们执行合成师, 我们得到剩下的5+52。Next, we divide results from the last synthetic division with the other complex root . Put − i 2 up in the left-hand corner box.
::接下来,我们把最后合成分解的结果与其他复杂的根分解。把-i2放在左手角框中。As a result, f ( x ) = 3 x 3 − 2 x 2 + 11 x − 9 x 2 + 2 = 3 x − 2 + 5 x − 5 x 2 + 2 .
::因此,f(x)=3x3-2x2+11-9x2+2=3x-2+5x-5x2+2。Example 2
::例2Divide 2 x 4 − 5 x 3 − 14 x 2 + 47 x − 30 by x − 2 .
::将 2x4 - 5x3 - 14x2+47x- 30 除以 x-2 。Using synthetic division, the setup is as follows:
::利用合成部门,设置如下:To “read” the answer, use the numbers as follows:
::在“阅读”答案时,使用以下数字:Therefore, 2 is a solution, because the remainder is zero. The factored polynomial is 2 x 3 − x 2 − 16 x + 15 . Notice that when we synthetically divide by k , the “leftover” polynomial is one degree less than the original. We could also write ( x − 2 ) ( 2 x 3 − x 2 − 16 x + 15 ) = 2 x 4 − 5 x 3 − 14 x 2 + 47 x − 30 .
::因此, 2 是一个解决方案, 因为剩余部分为零。 系数多元值为 2x3 - x2 - 16x+15。 注意当我们合成除以 k 时, “ 剩余” 多元值比原值低一度。 我们还可以写入 (x-2)( 2x3 - x2 - 16x+15) = 2x4 - 5x3 - 14x2+47x- 30) 。Example 3
::例3Determine if 4 is a solution to f ( x ) = 5 x 3 + 6 x 2 − 24 x − 16 .
::确定 4 是 f( x) = 5x3+6x2 - 24x - 16 的解决方案 。Using synthetic division, we have:
::利用合成分区,我们有:The remainder is 304, so 4 is not a solution. Notice if we substitute in x = 4 , also written f ( 4 ) , we would have f ( 4 ) = 5 ( 4 ) 3 + 6 ( 4 ) 2 − 24 ( 4 ) − 16 = 304 . This leads us to the Remainder Theorem .
::其余为 304, 因此 4 不是一个解决方案 。 如果我们替换 x= 4 , 通知将使用 f(4)= 5(4)3+6(4)2- 24(4)- 16= 304。 这让我们找到残余理论 。Remainder Theorem: If f ( k ) = r , then r is also the remainder when dividing by ( x − k ) .
::保留定理: 如果 f(k) =r, 当除以 (x-k) 时, r 也代表剩余 。This means that if you substitute in x = k or divide by k , what comes out of f ( x ) is the same. r is the remainder, but it is also the corresponding y − value. Therefore, the point ( k , r ) would be on the graph of f ( x ) .
::这意味着,如果您用 x=k 或除以 k 来替代 x=k 或除以 k, f( x) 中产生的内容是相同的。 r 是剩余部分, r 也是相应的 y- value。 因此, 点( k,r) 将会在 f( x) 的图形中 。Example 4
::例4Determine if ( 2 x − 5 ) is a factor of 4 x 4 − 9 x 2 − 100 .
::确定(2x-5)是否为4x4-9x2-100系数。If you use synthetic division, the factor is not in the form ( x − k ) . We need to solve the possible factor for zero to see what the possible solution would be. Therefore, we need to put 5 2 up in the left-hand corner box. Also, not every term is represented in this polynomial. When this happens, you must put in zero placeholders. In this example, we need zeros for the x 3 − term and the x − term.
::如果您使用合成除法, 则该因子不是以( x- k) 的形式( x- k) 。 我们需要解决零的可能因子, 才能看出可能的解决办法是什么。 因此, 我们需要将52 放在左侧角框中。 另外, 并非每个术语都代表于此多面体中。 发生这种情况时, 您必须输入零占位符 。 在此示例中, x3- 期和 x- 期中我们需要零 。This means that 5 2 is a zero and its corresponding binomial , ( 2 x − 5 ) , is a factor.
::这意味着52是零,其相应的二进制(2x-5)是一个因素。Example 5
::例5Is 6 a solution for f ( x ) = x 3 − 8 x 2 + 72 ? If so, find the real-number zeros (solutions) of the resulting polynomial.
::6 是 f( x) =x3- 8x2+72 的解决方案吗 ? 如果是的话, 请找到结果的多元性的实际数字零( 解决方案) 。Put a zero placeholder for the x − term. Divide by 6.
::x- 期数设置一个零占位符。除以 6 。The resulting polynomial is x 2 − 2 x − 12 . While this quadratic does not factor, we can use the Quadratic Formula to find the other roots.
::由此产生的多面体为 x2-2x-12。 虽然此二次方块不因子, 但是我们可以使用二次方块来找到其他根。x = 2 ± 2 2 − 4 ( 1 ) ( − 12 ) 2 = 2 ± 4 + 48 2 = 2 ± 2 13 2 = 1 ± 13
::x=222-4(1)(-1-2)2=24+482=22132=113The solutions to this polynomial are 6, 1 + 13 ≈ 4.61 and 1 − 13 ≈ − 2.61 .
::这一多元性的解决办法是6, 1+134.61和1-132.61。Example 6
::例6Divide 4 x 3 + 3 x 2 + 10 x + 4 by ( x 2 + 2 ) . Write the resulting polynomial with the remainder (if there is one).
::除以 4x3+3x2+10x+4 乘以 (x2+2) 。Using synthetic division, divide by i 2 .
::使用合成分除法,除以i2。Divide the results from the last step by − i 2 .
::将最后一步的结果除以-i2。The answer is 4 x + 3 + 2 x − 2 x 2 + 2 .
::答案是 4x+3+2x-2x2+2。Review
::回顾Divide using synthetic division:
::使用合成分数的除法 :- 7 x 2 − 23 x + 6 x − 3
::7x2-23x+6x-3
- x 4 − 5 x + 10 x + 3
::x4 - 5x+10x+3
- ( 2 x 2 + 13 x − 8 ) ÷ ( x − 1 2 )
:2x2+13x-8)(x-12)
- ( x 4 + 6 x 3 + 6 x 2 ) ÷ ( x + 5 )
:x4+6x3+6x2) (x+5)
- x 3 − 7 x − 6 x + 2
::x3 - 7x - 6x+2
- 8 y 3 + y 4 + 16 + 32 y + 24 y 2 y + 2
::8y3+y4+16+32y+24y2y+2
Use synthetic substitution to evaluate the polynomial function for the given value:
::使用合成替代来评价给定值的多元函数:- P ( x ) = 2 x 2 − 5 x − 3 for x = 4
::x=4的P(x)=2x2-5x-3
- P ( x ) = 4 x 3 − 5 x 2 + 3 for x = − 1
::x% 1 的 P(x) = 4x3 - 5x2+3
- p ( x ) = 3 x 3 − 5 x 2 − x = 2 for
::p(x) = 3x3 - 5x2 - x= 2 用于
- The area of a rectangle is 3 x 3 − 11 x 2 − 56 x − 48 and the length is 3 x + 4 . What is the width?
::矩形区域为 3x3 - 11x2 - 56x- 48,长度为 3x+4。宽度是多少?
- A group of geologists have taken a collection of samples of a substance from a proposed mining site and must identify the substance. Each sample is roughly cylindrical. The volume of each sample as a function of cylinder height (in centimeters) is %20%3D%20%5Cfrac%20%7B1%7D%7B4%7D%20%5Cpi%20h%5E3"> V ( h ) = 1 4 π h 3 . The mass (in grams) of each sample in terms of height can be modeled by %20%3D%20%5Cfrac%7B1%7D%7B4%7Dh%5E3%20-%20h%5E2%20%2B%205h"> M ( h ) = 1 4 h 3 − h 2 + 5 h . Write an expression that represents the density of the samples. (Hint: D = M V )
::一组地质学家从提议的矿址收集了物质样品,必须查明该物质。每个样品大致是圆柱形的。作为圆柱形高度(以厘米计)的函数,每个样品的体积是V=14h3。每个样品的重量(克)可以M
=14h3-h2+5h为模型。写一个表示样品密度的表达式。 (Hint:D=MV)
Divide using synthetic division:
::使用合成分数的除法 :- 4 x 3 − 3 x 2 + x + 1 divided by ( x 2 − 1 )
::4x3-3x2+x+1除以(x2-1)
- x 4 − x 2 + 1 divided by ( x 2 + 1 )
::x4 - x2+1 除以 (x2+1)
- 2 x 4 − 1 2 x 2 + 2 x divided by ( 4 x 2 − 1 )
::2x4 - 12x2+2x除以( 4x2 - 1)
- 4 x 3 − 3 x 2 + x + 1 divided by ( 4 x 2 + 1 )
::4x3-3x2+x+1除以(4x2+1)
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 - 7 x 2 − 23 x + 6 x − 3