Section outline

  • Xerxes says that the function y = x 2 4 x 2 + 7 , has a horizontal asymptote of y = 1 4 , Yolanda says the function has no horizontal asymptote, Zeb says that it does have a horizontal asymptote but it's at y = 0 . Which one of them is correct?
    ::Xerxes 表示函数 y=x- 24x2+7 具有 Y=14 的水平同位数, Yolanda 表示函数没有水平同位数, Zeb 表示函数确实有水平同位数, 但是在 y=0 。 其中哪一个正确 ?

    Graphing Rational Functions
    ::图形推理函数

    In this concept we will touch on the different possibilities for the remaining types of rational functions . You will need to use your graphing calculator throughout this concept to ensure your sketches are correct.
    ::在这个概念中,我们将触及剩余类型的理性函数的不同可能性。 您需要在整个概念中使用您的图形计算器, 以确保您的素描正确无误 。

    Let's graph y = x + 3 2 x 2 + 11 x 6  and find all asymptotes , intercepts , and the domain and range .
    ::让我们来绘制 y=x+32x2+11x-6, 并查找所有 asymptotes, 拦截, 以及域域和范围 。

    In this problem   the degree of the numerator is less than the degree of the denominator. Whenever this happens the horizontal asymptote will be y = 0 , or the x -axis. Now, even though the x -axis is the horizontal asymptote, there will still be a zero at x = 3 (solving the numerator for x and setting it equal to zero). The vertical asymptotes will be the solutions to 2 x 2 + 11 x 6 = 0 . Factoring this quadratic, we have ( 2 x 1 ) ( x + 6 ) = 0 and the solutions are x = 1 2 and 6 . The y - intercept is ( 0 , 1 2 ) . At this point, we can plug our function into the graphing calculator to get the general shape.
    ::在此问题上, 分子的程度低于分母的程度 。 每当发生这种情况时, 水平的静态将是 y=0 或 x- 轴 。 现在, 即使 x 轴是 水平的静态, 在 x% 3 时, 仍然会有 0 ( X) 3 点( 解开 x 的分子, 将其设置为为 0) 。 垂直静态将是 2x2+11x-6 =0 的解决方案 。 计算这个二次方形时, 我们有 2x-1 (x+6) =0 , 解决方案是 x=12 和 -6 点 。 y 插口是 ( 0, -12) 。 此时, 我们可以在图形计算器中插入我们的功能, 以获取普通形状 。

    Because the middle portion crosses over the horizontal asymptote, the range will be all real numbers. The domain is x R ; x = 6 ; x 1 2 .
    ::因为中间部分横跨水平等量, 范围将全部为真实数字。 域是 xR; x6; x12 。

    Be careful when graphing any rational function. This function does not look like the graph to the left in a TI-83/84. This is because the calculator does not have the ability to draw the asymptotes separately and wants to make the function continuous . Make sure to double-check the table ( 2 nd GRAPH) to find where the function is undefined .
    ::当绘制任何理性函数时要小心。 此函数看起来不像 TI- 83/84 中左侧的图形。 这是因为计算器没有能力单独绘制小数图, 并且想要使函数连续。 请确保双倍检查表格 (2nd & GRAPH) , 以找到函数未定义的位置 。

    Now, let's graph f ( x ) = x 2 + 7 x 30 x + 5  and find all asymptotes, intercepts, and the domain and range.
    ::现在,让我们来图f(x) =x2+7x-30x+5, 并查找所有小数点、 拦截、 域域和范围 。

    In this problem   the degree of the numerator is greater than the degree of the denominator . When this happens, there is no horizontal asymptote. Instead there is a slant asymptote . Recall that this function represents division . If we were to divide x 2 + 7 x 30 by x + 5 , the answer would be x + 2 20 x + 5 . The slant asymptote would be the answer, minus the remainder. Therefore ,for this problem the slant asymptote is y = x + 2 . Everything else is the same. The y -intercept is 30 5 ( 0 , 6 ) and the x -intercepts are the solutions to the numerator, x 2 + 7 x 30 = 0 ( x + 10 ) ( x 3 ) x = 10 , 3 . There is a vertical asymptote at x = 5 . At this point, you can either test a few points to see where the branches are or use your graphing calculator.
    ::在此问题上, 分子的度大于分母的分母度。 发生这种情况时, 没有水平的静态。 相反, 存在倾斜的静态。 回顾此函数代表分裂。 如果我们将 x2+7x- 30 除以 x+5, 答案将是 x+2-20x+5 。 那么, 倾斜的静态就是答案, 减去其余部分。 因此, 对于这个问题, 倾斜的静态是 y=x+2 。 其它的一切都是一样的。 y 截取是- 305( 0, - 6 ) , 而 x 截取是算术的解决方案 , x2+7x- 30=0.% ( x+10) (x- 3) {x10 。 。 在 x { 5 点, 您可以测试几个点来查看分支的位置或使用您的图形计算器 。

    lesson content

    The domain would be all real numbers; x 5 . Because of the slant asymptote, there are no restrictions on the range. It is all real numbers.
    ::域名将全部为真实数字; x5。 由于倾斜无序, 没有限制范围。 它都是真实数字 。

    Finally, let's graph y = x 6 3 x 2 16 x 12  and find the asymptotes and intercepts.
    ::最后,让我们来图y=x-63x2-16x-12 并找到小行星和拦截物。

    Because the degree of the numerator is less than the degree of the denominator, there will be a horizontal asymptote along the x -axis. Next, let’s find the vertical asymptotes by factoring the denominator; ( x 6 ) ( 3 x + 2 ) . Notice that the denominator has a factor of ( x 6 ) , which is the entirety of the numerator. That means there will be a hole at x = 6 .
    ::由于分子的分母度小于分母的分母度, x 轴上将有一个水平的同量点。 接下来,让我们通过对分母进行系数化来找到垂直的同量点;( x-6 (3x+2) ) 。 请注意, 分母有一个( x-6 ) 系数, 也就是数子的完整。 这意味着 x=6 上将有一个洞 。

    Therefore, the graph of y = x 6 3 x 2 16 x 12 will be the same as y = 1 3 x + 2 except with a hole at x = 6 . There is no x -intercept, the vertical asymptote is at x = 2 3 and the y -intercept is ( 0 , 1 2 ) .
    ::因此,y=x-63x2-16x-12的图形将与y=13x+2相同,但X=6的空洞除外。 没有 x intercut, 垂直的空位在 x23, y intercut is (0, 12) 。

    Recap
    ::复述( C)

    For a rational function; f ( x ) = p ( x ) q ( x ) = a m x m + + a 0 b n x n + + b 0
    ::合理函数; f( x)=p( x)q( x)=amxm+...+a0bnxn+...+b0

    1. If m < n , then there is a horizontal asymptote at y = 0 .
      ::如果 m < n, 那么y=0 就会有一个水平同位数 。
    2. If m = n , then there is a horizontal asymptote at y = a m b n (ratio of the leading coefficients).
      ::如果 m=n, y= ambn (主要系数的比值) 就会有一个水平的同位数 。
    3. If m > n , then there is a slant asymptote at y = ( a m x m + + a 0 ) ÷ ( b n x n + + b 0 ) without the remainder. In this concept, we will only have functions where m is one greater than n .
      ::如果 m>n , 那么y=( amxm+...+a0)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to determine which student is correct. 
    ::早些时候,有人要求你确定哪个学生是正确的。

    The degree of the numerator x 2 is less than the degree of the denominator 4 x 2 + 7 . We know that whenever this happens the horizontal asymptote will be y = 0 , or the x -axis.
    ::分子x-2的度小于分母 4x2+7 的度。 我们知道,一旦发生这种情况, 水平衰变将是y=0 或 x 轴 。

    Therefore, Zeb is correct.
    ::因此,Zeb是正确的。

    Graph the following functions. Find any intercepts and asymptotes.
    ::图形显示以下函数。查找任何拦截和微粒。

    Example 2
    ::例2

    y = 3 x + 5 2 x 2 + 9 x + 20
    ::y=3x+52x2+9x+20

    x -intercept: ( 5 3 , 0 ) , y -intercept: ( 0 , 1 4 )
    ::x 拦截sad-53,0) y 拦截sad0,14)

    horizontal asymptote: y = 0
    ::水平时间: y=0

    vertical asymptotes: none
    ::垂直等模点数: 无

    lesson content

    Example 3
    ::例3

    f ( x ) = x 2 + 4 x + 4 x 2 3 x 4
    :sadx) =x2+4x+4x2-3x-4

    x -intercept: ( 2 , 0 ) , y -intercept: ( 0 , 1 )
    ::x 拦截sad-2,0) y 拦截sad0,-1)

    horizontal asymptote: y = 1
    ::水平时间: y=1

    vertical asymptotes: x = 4 and x = 1
    ::垂直单位数 : x=4 和 x1

    lesson content

    Example 4
    ::例4

    g ( x ) = x 2 16 x + 3
    ::g(x) =x2 - 16x+3

    x -intercepts: ( 4 , 0 ) and ( 4 , 0 )
    ::x 拦截sad-4,0)和(-4,0)

    y -intercept: ( 0 , 16 3 )
    ::y 拦截: (0, - 163)

    slant asymptote: y = x 3
    ::倾斜渐移: y=x- 3

    vertical asymptotes: x = 3
    ::垂直数位数 : x3

    Example 5
    ::例5

    y = 2 x + 3 6 x 2 x 15
    ::y= 2x+36x2 - x- 15

    x -intercepts: none, hole at x = 3 2
    ::x 截取器: 无, x% 32 洞口

    y -intercept: ( 0 , 1 5 )
    ::y 拦截: (0, - 15)

    horizontal asymptote: y = 0
    ::水平时间: y=0

    vertical asymptote: x = 5 3
    ::垂直垂直时间数 : x=53

    Review
    ::回顾

    Find all asymptotes of the following functions.
    ::查找以下函数的所有微量。

    1. y = x 2 x 2 + 6 x + 8
      ::y=x- 2x2+6x+8
    2. y = x 2 4 x + 5
      ::y=x2 - 4x+5 y=x2 - 4x+5
    3. y = x 2 x 3
      ::y=x2x- 3 y=x2x- 3
    4. Find the x -intercepts of the function in #2.
      ::在 # 2 中查找函数的 x 界面 。
    5. Find the x -intercepts of the function in #3.
      ::在 # 3 中查找函数的 x 界面 。

    Graph the following functions. Find any intercepts, asymptote and holes.
    ::绘制以下函数的图。 查找任何拦截、 空洞和空洞 。

    1. y = x + 1 x 2 x 12
      ::y=x+1x2-x- 12 y=x+1x2-x- 12
    2. f ( x ) = x 2 + 3 x 10 x 3
      :sadxx) =x2+3x-10x-3
    3. y = x 7 2 x 2 11 x 21
      ::y=x - 72x2 - 11x- 21
    4. g ( x ) = 2 x 2 2 3 x + 5
      ::g(x) = 2x2 - 23x+5
    5. y = x 2 + x 30 x + 6
      ::y=x2+x-30x+6 y=x2+x-30x+6
    6. f ( x ) = x 2 + x 30 2 x 3 5 x 2 4 x + 3
      :sadx) =x2+x- 302x3- 5x2-4x+3
    7. y = x 3 2 x 2 3 x x 2 5 x + 6
      ::y=x3 - 2x2 - 3x2 - 5x+6 y=3 - 2x2 - 3x22 - 5x+6
    8. f ( x ) = 2 x + 5 x 2 + 5 x 6
      :sadx)=2x+5x2+5x-6
    9. g ( x ) = x 2 + 3 x + 4 2 x 6
      ::g(x) x2+3x+42x-6
    10. Determine the slant asymptote of y = 3 x 2 x 10 3 x + 5 . Now, graph this function. Is there really a slant asymptote? Can you explain your results?
      ::确定 y= 3x2- x- 103x+5 的倾斜渐移。 现在, 请绘制此函数 。 真的存在倾斜渐移吗 ? 您能否解释您的结果 ?

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。