9.6 数字度和分数度不同时的图形绘制
Section outline
-
Xerxes says that the function , has a horizontal asymptote of , Yolanda says the function has no horizontal asymptote, Zeb says that it does have a horizontal asymptote but it's at . Which one of them is correct?
::Xerxes 表示函数 y=x- 24x2+7 具有 Y=14 的水平同位数, Yolanda 表示函数没有水平同位数, Zeb 表示函数确实有水平同位数, 但是在 y=0 。 其中哪一个正确 ?Graphing Rational Functions
::图形推理函数In this concept we will touch on the different possibilities for the remaining types of rational functions . You will need to use your graphing calculator throughout this concept to ensure your sketches are correct.
::在这个概念中,我们将触及剩余类型的理性函数的不同可能性。 您需要在整个概念中使用您的图形计算器, 以确保您的素描正确无误 。Let's graph and find all asymptotes , intercepts , and the domain and range .
::让我们来绘制 y=x+32x2+11x-6, 并查找所有 asymptotes, 拦截, 以及域域和范围 。In this problem the degree of the numerator is less than the degree of the denominator. Whenever this happens the horizontal asymptote will be , or the -axis. Now, even though the -axis is the horizontal asymptote, there will still be a zero at (solving the numerator for and setting it equal to zero). The vertical asymptotes will be the solutions to . Factoring this quadratic, we have and the solutions are and . The - intercept is . At this point, we can plug our function into the graphing calculator to get the general shape.
::在此问题上, 分子的程度低于分母的程度 。 每当发生这种情况时, 水平的静态将是 y=0 或 x- 轴 。 现在, 即使 x 轴是 水平的静态, 在 x% 3 时, 仍然会有 0 ( X) 3 点( 解开 x 的分子, 将其设置为为 0) 。 垂直静态将是 2x2+11x-6 =0 的解决方案 。 计算这个二次方形时, 我们有 2x-1 (x+6) =0 , 解决方案是 x=12 和 -6 点 。 y 插口是 ( 0, -12) 。 此时, 我们可以在图形计算器中插入我们的功能, 以获取普通形状 。Because the middle portion crosses over the horizontal asymptote, the range will be all real numbers. The domain is .
::因为中间部分横跨水平等量, 范围将全部为真实数字。 域是 xR; x6; x12 。Be careful when graphing any rational function. This function does not look like the graph to the left in a TI-83/84. This is because the calculator does not have the ability to draw the asymptotes separately and wants to make the function continuous . Make sure to double-check the table ( GRAPH) to find where the function is undefined .
::当绘制任何理性函数时要小心。 此函数看起来不像 TI- 83/84 中左侧的图形。 这是因为计算器没有能力单独绘制小数图, 并且想要使函数连续。 请确保双倍检查表格 (2nd & GRAPH) , 以找到函数未定义的位置 。Now, let's graph and find all asymptotes, intercepts, and the domain and range.
::现在,让我们来图f(x) =x2+7x-30x+5, 并查找所有小数点、 拦截、 域域和范围 。In this problem the degree of the numerator is greater than the degree of the denominator . When this happens, there is no horizontal asymptote. Instead there is a slant asymptote . Recall that this function represents division . If we were to divide by , the answer would be . The slant asymptote would be the answer, minus the remainder. Therefore ,for this problem the slant asymptote is . Everything else is the same. The -intercept is and the -intercepts are the solutions to the numerator, . There is a vertical asymptote at . At this point, you can either test a few points to see where the branches are or use your graphing calculator.
::在此问题上, 分子的度大于分母的分母度。 发生这种情况时, 没有水平的静态。 相反, 存在倾斜的静态。 回顾此函数代表分裂。 如果我们将 x2+7x- 30 除以 x+5, 答案将是 x+2-20x+5 。 那么, 倾斜的静态就是答案, 减去其余部分。 因此, 对于这个问题, 倾斜的静态是 y=x+2 。 其它的一切都是一样的。 y 截取是- 305( 0, - 6 ) , 而 x 截取是算术的解决方案 , x2+7x- 30=0.% ( x+10) (x- 3) {x10 。 。 在 x { 5 点, 您可以测试几个点来查看分支的位置或使用您的图形计算器 。The domain would be all real numbers; . Because of the slant asymptote, there are no restrictions on the range. It is all real numbers.
::域名将全部为真实数字; x5。 由于倾斜无序, 没有限制范围。 它都是真实数字 。Finally, let's graph and find the asymptotes and intercepts.
::最后,让我们来图y=x-63x2-16x-12 并找到小行星和拦截物。Because the degree of the numerator is less than the degree of the denominator, there will be a horizontal asymptote along the -axis. Next, let’s find the vertical asymptotes by factoring the denominator; . Notice that the denominator has a factor of , which is the entirety of the numerator. That means there will be a hole at .
::由于分子的分母度小于分母的分母度, x 轴上将有一个水平的同量点。 接下来,让我们通过对分母进行系数化来找到垂直的同量点;( x-6 (3x+2) ) 。 请注意, 分母有一个( x-6 ) 系数, 也就是数子的完整。 这意味着 x=6 上将有一个洞 。Therefore, the graph of will be the same as except with a hole at . There is no -intercept, the vertical asymptote is at and the -intercept is .
::因此,y=x-63x2-16x-12的图形将与y=13x+2相同,但X=6的空洞除外。 没有 x intercut, 垂直的空位在 x23, y intercut is (0, 12) 。Recap
::复述( C)For a rational function;
::合理函数; f( x)=p( x)q( x)=amxm+...+a0bnxn+...+b0-
If
, then there is a horizontal asymptote at
.
::如果 m < n, 那么y=0 就会有一个水平同位数 。 -
If
, then there is a horizontal asymptote at
(ratio of the leading coefficients).
::如果 m=n, y= ambn (主要系数的比值) 就会有一个水平的同位数 。 -
If
, then there is a slant asymptote at
without the remainder. In this concept, we will only have functions where
is one greater than
.
::如果 m>n , 那么y=( amxm+...+a0)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Examples
::实例Example 1
::例1Earlier, you were asked to determine which student is correct.
::早些时候,有人要求你确定哪个学生是正确的。The degree of the numerator is less than the degree of the denominator . We know that whenever this happens the horizontal asymptote will be , or the -axis.
::分子x-2的度小于分母 4x2+7 的度。 我们知道,一旦发生这种情况, 水平衰变将是y=0 或 x 轴 。Therefore, Zeb is correct.
::因此,Zeb是正确的。Graph the following functions. Find any intercepts and asymptotes.
::图形显示以下函数。查找任何拦截和微粒。Example 2
::例2
::y=3x+52x2+9x+20-intercept: , -intercept:
::x 拦截-53,0) y 拦截
0,14)
horizontal asymptote:
::水平时间: y=0vertical asymptotes: none
::垂直等模点数: 无Example 3
::例3
:x) =x2+4x+4x2-3x-4
-intercept: , -intercept:
::x 拦截-2,0) y 拦截
0,-1)
horizontal asymptote:
::水平时间: y=1vertical asymptotes: and
::垂直单位数 : x=4 和 x1Example 4
::例4
::g(x) =x2 - 16x+3-intercepts: and
::x 拦截-4,0)和(-4,0)
-intercept:
::y 拦截: (0, - 163)slant asymptote:
::倾斜渐移: y=x- 3vertical asymptotes:
::垂直数位数 : x3Example 5
::例5
::y= 2x+36x2 - x- 15-intercepts: none, hole at
::x 截取器: 无, x% 32 洞口-intercept:
::y 拦截: (0, - 15)horizontal asymptote:
::水平时间: y=0vertical asymptote:
::垂直垂直时间数 : x=53Review
::回顾Find all asymptotes of the following functions.
::查找以下函数的所有微量。-
::y=x- 2x2+6x+8 -
::y=x2 - 4x+5 y=x2 - 4x+5 -
::y=x2x- 3 y=x2x- 3 -
Find the
x
-intercepts of the function in #2.
::在 # 2 中查找函数的 x 界面 。 -
Find the
x
-intercepts of the function in #3.
::在 # 3 中查找函数的 x 界面 。
Graph the following functions. Find any intercepts, asymptote and holes.
::绘制以下函数的图。 查找任何拦截、 空洞和空洞 。-
::y=x+1x2-x- 12 y=x+1x2-x- 12 -
:xx) =x2+3x-10x-3
-
::y=x - 72x2 - 11x- 21 -
::g(x) = 2x2 - 23x+5 -
::y=x2+x-30x+6 y=x2+x-30x+6 -
:x) =x2+x- 302x3- 5x2-4x+3
-
::y=x3 - 2x2 - 3x2 - 5x+6 y=3 - 2x2 - 3x22 - 5x+6 -
:x)=2x+5x2+5x-6
-
::g(x) x2+3x+42x-6 -
Determine the slant asymptote of
. Now, graph this function. Is there really a slant asymptote? Can you explain your results?
::确定 y= 3x2- x- 103x+5 的倾斜渐移。 现在, 请绘制此函数 。 真的存在倾斜渐移吗 ? 您能否解释您的结果 ?
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
If
, then there is a horizontal asymptote at
.