9.7 简化理性表达式
Section outline
-
The area of a rectangle is . The width of the rectangle is . What is the length of the rectangle?
::矩形区域为 2x4-2 。 矩形宽度为 x2+1 。 矩形的长度是多少?Rational Expressions
::理性表达式Recall that a rational function is a function , , such that , where and are both . A rational expression , is just . Like any fraction , a rational expression can be simplified. To simplify a rational expression, you will need to factor the polynomials, determine if any factors are the same, and then cancel out any like factors.
::回顾理性函数是一个函数 f(x) , 即 f(x) = p(x) = p(x) 和 q(x) , p(x) 和 q(x) 是两者的函数。 理性表达只是 p(x) q(x) 。 与任何部分一样, 理性表达也可以简化 。 要简化理性表达, 您需要将多元表达法计算在内, 确定是否有任何因素相同, 然后取消任何类似因素 。Fraction:
::分数: 915=333=35Rational Expression:
::有理表达式: x2+6x+9x2+8x+8x+15=(x+3)(x+3)(x+3)(x+3)(x+5)=x+3x+5With both fractions, we broke apart the numerator and denominator into the prime factorization. Then, we canceled the common factors.
::以两个分数, 我们打破了分子和分母 进入质因子化。 然后, 我们取消了共同因素 。Important Note: is completely factored. Do not cancel out the ’s! reduces to , but does not because of the addition sign. To prove this, we will plug in a number for to and show that the fraction does not reduce to . If , then .
::重要注意 : x+3x+5 已完全计算在内 。 不要取消 x 的 3x5 。 3x5x 减为35, 但 x+3x+5 并不是因为添加符号。 为了证明这一点, 我们将插入 x 的编号, 并显示如果 x=2, 那么 2+32+5=57QQQ35, 则该分数不会减为35 。Let's simplify the following expressions.
::让我们简化以下表达式。-
::2x34x2-6x
The numerator factors to be and the denominator is .
::2x3=2xxxxxxxxx和分母为4x2-6x=2x(2x-3)。
::2x34x2-6x=2xxxxxxxxxx2xxxx}(2x-3)=x22x-3-
::6x2 - 7x - 32x3 - 3x2
Factor the numerator and find the GCF of the denominator and cancel out the like terms .
::乘以分子数,找到分母的绿色气候基金,取消类似条件。
::6x2-7x-32x3-3x2=(2x-3)(3x+1)xxx2(2x-3)=3x+1x2x2-
::x2-6x+272x2-19x+9
Factor both the top and bottom and see if there are any common factors.
::将上部和下部都考虑在内,看看是否存在任何共同因素。
::x2-6x+272x2-19x+9=(x-9)(x+3(x-9)(x-9)(2x-1)=x+32x-1)Special Note: Not every polynomial in a rational function will be factorable. Sometimes there are no common factors. When this happens, write “not factorable.”
::特殊注释 : 理性函数中并不是每个多边函数都是可以考虑的因素。 有时没有共同的因素。 当发生这种情况时, 请写“ 不可考虑的因素 ” 。Examples
::实例Example 1
::例1Earlier, you were asked to find the length of the rectangle.
::早些时候,有人要求你找到矩形的长度。Recall that the the area of a rectangle is the length times the width. To find the length, we can therefore divide the area by the width. So we're looking for .
::回顾矩形区域是宽度的长度倍数。 要找到宽度, 我们可以将区域除以宽度。 所以我们要寻找 2x4 - 2x2+1 。If we factor the numerator and the denominator, we get:
::如果我们乘以分子和分母,我们就会得到:
::2x4-2x2+12(x4-1-1)x2+22(x2+1)(x2-1)x2+12(x2-1)=2x2-2Therefore, the length of the rectangle is .
::因此,矩形长度为2(x2-1)=2x2-2。If possible, simplify the following rational functions.
::如有可能,简化下列合理职能。Example 2
::例2
::3x2 - x3x2
::3x2-x3x2=x(3x-1)3xxxx=3x-13xExample 3
::例3
::x2+6x+8x2+6x+9There are no common factors, so this is reduced.
::x2+6x+8x2+6x+9=(x+4)(x+2(x+2)(x+3)(x+3))没有共同因素,因此会减少。Example 4
::例4
::2x2+x-106x2+17x+5
::2x2+x-106x2+17x+5=(2x+5)(x-2)(2x+5)(3x+1)=x-23x+1Example 5
::例5
::x3-4x25+4x3-3-3-22xxxIn this problem, the denominator will factor like a quadratic once an is pulled out of each term .
::在此问题上,当一个x从每个术语中拔出时,分母就会像二次方位数一样考虑。
::x3-4x5+4x5+4x3-32x=xx(x2-4)x(x4+4x2)x(x4+4x2-2-32)x(x-2)(x+2-2)x(x2-4(x2)+8)=x(x-2)(x+2)(x+2)xx(x-2)(x+2)(x+2)(x2+8)=1x2+8Review
::回顾-
Does
simplify to
? Explain why or why not.
::x-2x-6 是否简化为 13 ? 解释原因或原因 。 -
Does
simplify to
? Explain why or why not.
::5x10x是否简化为12?解释原因或原因。 -
In your own words, explain the difference between the previous two expressions and why one simplifies and one does not.
::用你自己的话来说,请解释前两个表达式的区别,以及一个表达式简化而一个不简化的原因。
Simplify the following rational expressions.
::简化以下理性表达式。-
::432x2+3x -
::x3+x2-2x4+4x3-5x2 -
::2x2 - 5x - 32x2 - 7x - 4 -
::5x2+37x+145x3-3-3-3-33x2-14x -
::8x2-60x-32-44x2+26x+48 -
::6x3-24x2+30x-1209x4+36x2-45 -
::6x2+5x-46x2-x-1 -
::x4+8x24-2x3+4x2 -
::6x4-3x3-63x212x2-84x -
::x5 - 3x3 - 4x4+2x3+x2+2x -
::- 3x2+25x-8x3-8x2+x-8 -
::-x3+3x2+13x-15-2x3+7x2+20x-25
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -