Section outline

  • The area of a rectangle is 2 x 4 2 . The width of the rectangle is x 2 + 1 . What is the length of the rectangle?
    ::矩形区域为 2x4-2 。 矩形宽度为 x2+1 。 矩形的长度是多少?

    Rational Expressions
    ::理性表达式

    Recall that a rational function is a function , f ( x ) , such that f ( x ) = p ( x ) q ( x ) , where p ( x ) and q ( x ) are both . A rational expression , is just p ( x ) q ( x ) . Like any fraction , a rational expression can be simplified. To simplify a rational expression, you will need to factor the polynomials, determine if any factors are the same, and then cancel out any like factors.
    ::回顾理性函数是一个函数 f(x) , 即 f(x) = p(x) = p(x) 和 q(x) , p(x) 和 q(x) 是两者的函数。 理性表达只是 p(x) q(x) 。 与任何部分一样, 理性表达也可以简化 。 要简化理性表达, 您需要将多元表达法计算在内, 确定是否有任何因素相同, 然后取消任何类似因素 。

    Fraction: 9 15 = 3 3 3 5 = 3 5
    ::分数: 915=333=35

    Rational Expression: x 2 + 6 x + 9 x 2 + 8 x + 15 = ( x + 3 ) ( x + 3 ) ( x + 3 ) ( x + 5 ) = x + 3 x + 5
    ::有理表达式: x2+6x+9x2+8x+8x+15=(x+3)(x+3)(x+3)(x+3)(x+5)=x+3x+5

    With both fractions, we broke apart the numerator and denominator into the prime factorization. Then, we canceled the common factors.
    ::以两个分数, 我们打破了分子和分母 进入质因子化。 然后, 我们取消了共同因素 。

    Important Note: x + 3 x + 5 is completely factored. Do not cancel out the x ’s! 3 x 5 x reduces to 3 5 , but x + 3 x + 5 does not because of the addition sign. To prove this, we will plug in a number for x to and show that the fraction does not reduce to 3 5 . If x = 2 , then 2 + 3 2 + 5 = 5 7 3 5 .
    ::重要注意 : x+3x+5 已完全计算在内 。 不要取消 x 的 3x5 。 3x5x 减为35, 但 x+3x+5 并不是因为添加符号。 为了证明这一点, 我们将插入 x 的编号, 并显示如果 x=2, 那么 2+32+5=57QQQ35, 则该分数不会减为35 。

    Let's simplify the following expressions.
    ::让我们简化以下表达式。

    1. 2 x 3 4 x 2 6 x
      ::2x34x2-6x

    The numerator factors to be 2 x 3 = 2 x x x and the denominator is 4 x 2 6 x = 2 x ( 2 x 3 ) .
    ::2x3=2xxxxxxxxx和分母为4x2-6x=2x(2x-3)。

    2 x 3 4 x 2 6 x = 2 x x x 2 x ( 2 x 3 ) = x 2 2 x 3
    ::2x34x2-6x=2xxxxxxxxxx2xxxx}(2x-3)=x22x-3

    1. 6 x 2 7 x 3 2 x 3 3 x 2
      ::6x2 - 7x - 32x3 - 3x2

    Factor the numerator and find the GCF of the denominator and cancel out the like terms .
    ::乘以分子数,找到分母的绿色气候基金,取消类似条件。

    6 x 2 7 x 3 2 x 3 3 x 2 = ( 2 x 3 ) ( 3 x + 1 ) x 2 ( 2 x 3 ) = 3 x + 1 x 2
    ::6x2-7x-32x3-3x2=(2x-3)(3x+1)xxx2(2x-3)=3x+1x2x2

    1. x 2 6 x + 27 2 x 2 19 x + 9
      ::x2-6x+272x2-19x+9

    Factor both the top and bottom and see if there are any common factors.
    ::将上部和下部都考虑在内,看看是否存在任何共同因素。

    x 2 6 x + 27 2 x 2 19 x + 9 = ( x 9 ) ( x + 3 ) ( x 9 ) ( 2 x 1 ) = x + 3 2 x 1
    ::x2-6x+272x2-19x+9=(x-9)(x+3(x-9)(x-9)(2x-1)=x+32x-1)

    Special Note: Not every polynomial in a rational function will be factorable. Sometimes there are no common factors. When this happens, write “not factorable.”
    ::特殊注释 : 理性函数中并不是每个多边函数都是可以考虑的因素。 有时没有共同的因素。 当发生这种情况时, 请写“ 不可考虑的因素 ” 。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find  the length of the rectangle. 
    ::早些时候,有人要求你找到矩形的长度。

    Recall that the the area of a rectangle is the length times the width. To find the length, we can therefore divide the area by the width. So we're looking for 2 x 4 2 x 2 + 1 .
    ::回顾矩形区域是宽度的长度倍数。 要找到宽度, 我们可以将区域除以宽度。 所以我们要寻找 2x4 - 2x2+1 。

    If we factor the numerator and the denominator, we get:
    ::如果我们乘以分子和分母,我们就会得到:

    2 x 4 2 x 2 + 1 2 ( x 4 1 ) x 2 + 2 2 ( x 2 + 1 ) ( x 2 1 ) x 2 + 1 2 ( x 2 1 ) = 2 x 2 2

    ::2x4-2x2+12(x4-1-1)x2+22(x2+1)(x2-1)x2+12(x2-1)=2x2-2

    Therefore, the length of the rectangle is 2 ( x 2 1 ) = 2 x 2 2 .
    ::因此,矩形长度为2(x2-1)=2x2-2。

    If possible, simplify the following rational functions.
    ::如有可能,简化下列合理职能。

    Example 2
    ::例2

    3 x 2 x 3 x 2
    ::3x2 - x3x2

    3 x 2 x 3 x 2 = x ( 3 x 1 ) 3 x x = 3 x 1 3 x
    ::3x2-x3x2=x(3x-1)3xxxx=3x-13x

    Example 3
    ::例3

    x 2 + 6 x + 8 x 2 + 6 x + 9
    ::x2+6x+8x2+6x+9

    x 2 + 6 x + 8 x 2 + 6 x + 9 = ( x + 4 ) ( x + 2 ) ( x + 3 ) ( x + 3 ) There are no common factors, so this is reduced.
    ::x2+6x+8x2+6x+9=(x+4)(x+2(x+2)(x+3)(x+3))没有共同因素,因此会减少。

    Example 4
    ::例4

    2 x 2 + x 10 6 x 2 + 17 x + 5
    ::2x2+x-106x2+17x+5

    2 x 2 + x 10 6 x 2 + 17 x + 5 = ( 2 x + 5 ) ( x 2 ) ( 2 x + 5 ) ( 3 x + 1 ) = x 2 3 x + 1
    ::2x2+x-106x2+17x+5=(2x+5)(x-2)(2x+5)(3x+1)=x-23x+1

    Example 5
    ::例5

    x 3 4 x x 5 + 4 x 3 32 x
    ::x3-4x25+4x3-3-3-22xxx

    In this problem, the denominator will factor like a quadratic once an x is pulled out of each term .
    ::在此问题上,当一个x从每个术语中拔出时,分母就会像二次方位数一样考虑。

    x 3 4 x x 5 + 4 x 3 32 x = x ( x 2 4 ) x ( x 4 + 4 x 2 32 ) = x ( x 2 ) ( x + 2 ) x ( x 2 4 ) ( x 2 + 8 ) = x ( x 2 ) ( x + 2 ) x ( x 2 ) ( x + 2 ) ( x 2 + 8 ) = 1 x 2 + 8
    ::x3-4x5+4x5+4x3-32x=xx(x2-4)x(x4+4x2)x(x4+4x2-2-32)x(x-2)(x+2-2)x(x2-4(x2)+8)=x(x-2)(x+2)(x+2)xx(x-2)(x+2)(x+2)(x2+8)=1x2+8

    Review
    ::回顾

    1. Does x 2 x 6 simplify to 1 3 ? Explain why or why not.
      ::x-2x-6 是否简化为 13 ? 解释原因或原因 。
    2. Does 5 x 10 x simplify to 1 2 ? Explain why or why not.
      ::5x10x是否简化为12?解释原因或原因。
    3. In your own words, explain the difference between the previous two expressions and why one simplifies and one does not.
      ::用你自己的话来说,请解释前两个表达式的区别,以及一个表达式简化而一个不简化的原因。

    Simplify the following rational expressions.
    ::简化以下理性表达式。

    1. 4 x 3 2 x 2 + 3 x
      ::432x2+3x
    2. x 3 + x 2 2 x x 4 + 4 x 3 5 x 2
      ::x3+x2-2x4+4x3-5x2
    3. 2 x 2 5 x 3 2 x 2 7 x 4
      ::2x2 - 5x - 32x2 - 7x - 4
    4. 5 x 2 + 37 x + 14 5 x 3 33 x 2 14 x
      ::5x2+37x+145x3-3-3-3-33x2-14x
    5. 8 x 2 60 x 32 4 x 2 + 26 x + 48
      ::8x2-60x-32-44x2+26x+48
    6. 6 x 3 24 x 2 + 30 x 120 9 x 4 + 36 x 2 45
      ::6x3-24x2+30x-1209x4+36x2-45
    7. 6 x 2 + 5 x 4 6 x 2 x 1
      ::6x2+5x-46x2-x-1
    8. x 4 + 8 x x 4 2 x 3 + 4 x 2
      ::x4+8x24-2x3+4x2
    9. 6 x 4 3 x 3 63 x 2 12 x 2 84 x
      ::6x4-3x3-63x212x2-84x
    10. x 5 3 x 3 4 x x 4 + 2 x 3 + x 2 + 2 x
      ::x5 - 3x3 - 4x4+2x3+x2+2x
    11. 3 x 2 + 25 x 8 x 3 8 x 2 + x 8
      ::- 3x2+25x-8x3-8x2+x-8
    12. x 3 + 3 x 2 + 13 x 15 2 x 3 + 7 x 2 + 20 x 25
      ::-x3+3x2+13x-15-2x3+7x2+20x-25

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。