Section outline

  • A scale model of a racecar is in the ratio of 1: x to the real racecar. The length of the model is 2 x 21 units, and the length of the real racecar is x 2 units. What is the value of x ?
    ::赛车规模模型的比重为 1:x 与 实际赛车的比重。 模型的长度为 2x- 21 个单位,而实际赛车的长度为 x2 个单位。 x 值是多少?

    Solving Rational Equations Using Cross Multiplication
    ::使用交叉乘法解决合理等式

    A rational equation is an equation where there are rational expressions on both sides of the equal sign. One way to solve rational equations is to use cross- multiplication . Here is an example of a proportion that we can solve using cross-multiplication.
    ::理性方程式是一个等式, 它在等号的两侧都有合理的表达方式。 解答理性方程式的一个方法就是使用交叉乘法。 这是一个比例的示例, 我们可以使用交叉乘法来解决 。

    Let's u se cross multiplication to solve the following equations.
    ::让我们使用交叉乘法来解决以下方程。

    1. x 2 x 3 = 3 x x + 11
      ::x2x-3=3xx+11


      ::x2x-3=3xx+11

    Cross-multiply and solve.
    ::交叉倍数和解答。

    Check your answers. It is possible to get extraneous solutions with rational expressions.
    ::检查您的答案。 可以用理性表达式获得不相干的解决办法 。

    0 2 0 3 = 3 0 0 + 11 4 2 4 3 = 3 4 4 + 11 0 3 = 0 11   4 5 = 12 15 0 = 0 4 5 = 4 5

    1. x + 1 4 = 3 x 3
      ::x+14=3x-3

    Cross-multiply and solve.
    ::交叉倍数和解答。

    x + 1 4 = 3 x 3 12 = x 2 2 x 3 0 = x 2 2 x 15 0 = ( x 5 ) ( x + 3 ) x = 5   a n d   3

    ::x+14=3x-312=x2-2x-30=x2-30=x2-2x-150=(x-5)(x+5)(x+3)x=5和-3

    Check your answers.
    ::检查你的答案。

    5 + 1 4 = 3 5 3 6 4 = 3 2 and
    ::5+14=35-364=32和

    3 + 1 4 = 3 3 3 2 4 = 3 6

    1. x 2 2 x 5 = x + 8 2
      ::x22x- 5=x+82

    Cross-multiply and solve.
    ::交叉倍数和解答。

    x 2 2 x 5 = x + 8 2 2 x 2 + 11 x 40 = 2 x 2 11 x 40 = 0 11 x = 40 x = 40 11

    ::x22x- 5=x+822x2+11x- 40=2x221x- 40=011x=011x=40x=4011

    Check the answer: ( 40 11 ) 2 80 11 5 = 40 11 + 8 2 1600 121 ÷ 25 11 = 128 11 ÷ 2 64 11 = 128 22
    ::答: (4011) 28011- 5= 4011+82_ 1600121_ @ 2511=12811=2_ 6411=12822

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find the value of x. 
    ::早些时候,你被要求找到x的值。

    We need to set up a rational equation and solve for x .
    ::我们需要设置一个理性的方程 并解决x。

    1 x = 2 x 21 x 2
    ::1x=2x-21x2

    Now cross-multiply.
    ::现在交叉倍增

    x 2 = x ( 2 x 21 ) x 2 = 2 x 2 21 x 0 = x 2 21 x 0 = x ( x 21 ) x = 0 , 21

    ::x2=xx(2x-21xx2=2x2-21x0=x2-21x0=x2-21x0=xx(x-21x)x=0,21

    However, x is a ratio so it must be greater than 0. Therefore x equals 21 and the model is in the ratio 1:21 to the real racecar.
    ::然而,x是一个比率,因此它必须大于0。因此,x等于21,模型是实际赛车的1:21比1。

    Solve the following rational equations.
    ::解决以下合理的方程式。

    Example 2
    ::例2

    x x 1 = x 8 3
    ::-xx-1=x-83


    x x 1 = x 8 3 x 2 9 x + 8 = 3 x x 2 6 x + 8 = 0 ( x 4 ) ( x 2 ) = 0 x = 4   a n d   2

    ::-xx-1=x-83x2-9x+8*3x2-6x8=0(x-4)(x-2)=0x=4和2

    Check : x = 4 4 4 1 = 4 8 3 x = 2 2 2 1 = 2 8 3 4 3 = 4 3 2 1 = 6 3

    ::检查:x=444- 1=4-83x=222-1=2-83-43}43-2163

    Example 3
    ::例3

    x 2 1 x + 2 = 2 x 1 2
    ::x2 - 1x+2=2x- 12


    x 2 1 x + 2 = 2 x 1 2 2 x 2 + 3 x 2 = 2 x 2 2 3 x = 0 x = 0

    ::x2 - 1x+2=2x - 122x2+3x-2=2x2 - 23x=0x=0

    Check : 0 2 1 0 + 2 = 2 ( 0 ) 1 2 1 2 = 1 2

    ::检查:02- 10+2=2( 0)- 12- 12 @ 12

    Example 4
    ::例4

    9 x x 2 = 4 3 x
    ::9-2x2=4-3x


    9 x x 2 = 4 3 x 4 x 2 = 27 x + 3 x 2 x 2 + 27 x = 0 x ( x + 27 ) = 0 x = 0   a n d   27

    ::9 -xx2=4 - 3x4x2\27x+3x2x2x2+27x=0xxxxxx(x+27=0x=0和-27

    Check : x = 0 9 0 0 2 = 4 3 ( 0 ) x = 27 9 + 27 ( 27 ) 2 = 4 3 ( 27 ) u n d = u n d 36 729 = 4 81   4 81 = 4 81

    ::检查:x=09- 002=4- 3(0)x_ 27_ 9+27(- 272)=4-3(- 27und=und36729=481 481=481=481

    x = 0 is not actually a solution because it is a vertical asymptote for each rational expression , if graphed. Because zero is not part of the domain , it cannot be a solution, and is extraneous.
    ::x=0 不是一个实际的解决方案, 因为它是每个理性表达式的垂直零点, 如果图形化的话。 因为零不是域的一部分, 它不能是一个解决方案, 而且是外在的 。

    Review
    ::回顾

    1. Is x = 2 a solution to x 1 x 4 = x 2 1 x + 4 ?
      ::x% 2 是 x- 1x-4 = x2 - 1x+4 的解决方案吗 ?

    Solve the following rational equations.
    ::解决以下合理的方程式。

    1. 2 x x + 3 = 8 x
      ::2xx+3=8x
    2. 4 x + 1 = x + 2 3
      ::4x+1=x+23 4x+1=x+23
    3. x 2 x + 2 = x + 3 2
      ::x2x+2=x+32
    4. 3 x 2 x 1 = 2 x + 1 x
      ::3x2x- 1=2x+1x
    5. x + 2 x 3 = x 3 x 2
      ::x+2x- 3=x3x-2
    6. x + 3 3 = 2 x + 6 x 3
      ::x+3 - 3=2x+6x- 3
    7. 2 x + 5 x 1 = 2 x 4
      ::2x+5x-1=2x-4
    8. 6 x 1 4 x 2 = 3 2 x + 5
      ::6-14x2=32x+5
    9. 5 x 2 + 1 10 = x 3 8 2 x
      ::5x2+110=x3-82x
    10. x 2 4 x + 4 = 2 x 1 3
      ::x2 - 4x+4=2x- 13

    Determine the values of a that make each statement true. If there no values, write none.
    ::确定使每个语句真实的值。 如果没有数值, 写不出来 。

    1. 1 x a = x x + a , such that there is no solution.
      ::1xa=xx+a,因此没有解决办法。
    2. 1 x a = x x a , such that there is no solution.
      ::1 -a=xx-a,因此没有解决办法。
    3. x a x = 1 x + a , such that there is one solution.
      ::x-ax=1x+a, 只有一个解决方案 。
    4. 1 x + a = x x a , such that there are two integer solutions.
      ::1x+a=xx-a,有两种整数解决办法。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。