3.1 函数和逆函数
Section outline
-
You may not realize it, but you have dealt with inverse functions for most of your life. Inverse functions are functions which 'undo' each other. For instance, is the function to convert teaspoons to tablespoons. The inverse: converts from tablespoons back to teaspoons.
::您可能没有意识到它, 但您一生的大部分时间都处理过反函数。 反函数是“ 互不” 的函数。 例如, 3t=T 是将茶匙转换成茶匙的函数。 反之 : t=T3 转换成茶匙 。Inverse functions are also used in geometry. Consider the following:
::几何中也使用逆函数。 考虑以下各点:You are asked to design the new box for the iMp3 player that your company makes. You know that the iMp3 is 5.4in tall, 2.3in wide, and .5in thick.
::您被要求为您公司制造的 iMp3 播放器设计新框。 您知道 iMp3 高5. 4, 宽2.3, 厚5. 5 。-
What is the volume of a box that will just fit the iMp3?
::一个符合iMp3的盒子的体积是多少? -
If you knew that the iMp3 2 was soon to be released, and it had 10% less volume without changing height or width, could you prepare a box for it?
::如果你知道iMp3 2 很快即将发布, 且其体积少10%而不改变高度或宽度, 你能准备一个盒子吗? -
Can you identify the inverse functions that might be applicable in this scenario?
::您能否确定可能适用于此情景的反函数 ?
Functions and Inverses
::函数和反函数Consider the functions and together. These two functions are inverses.
::将函数 t( x) = 59( x-32) 和 f( x) = 95x+32 一起考虑。 这两个函数是反向的 。Informally, if two functions are inverses , then the input of one function is the output of the other.
::非正式地说,如果两个功能是反向的,那么一个函数的投入就是另一个函数的产出。Formally, the inverse of a function is defined as follows:
::在形式上,一项职能的反面定义如下:Functions f( x ) and g ( x ) are said to be inverses if f(g(x)) = g(f(x)) = x.
::如果f(g(x)=g(f(x))=x,函数f(x)和g(x)据说是反数。Or, using the composite function notation: f ◦ g = g ◦ f = x.
::或者,使用复合函数符号:fg=gf=x。The following notation is used to indicate inverse functions: If f ( x ) and g ( x ) are inverse functions, then f ( x ) = g -1 ( x ) and g ( x ) = f -1 ( x ) The following notation is also used: f = g -1 and g = f -1 . Note that f -1 (x) does not equal .
::以下标记用于表示反函数: Iff(x) 和 g(x) 是反函数, 然后f(x) =g-1(x) 和g(x) =f-1(x) 也使用以下标记: f=g-1andg=f-1。 注意 F-1(x) 并不等于 1f(x) 。Informally, we can identify the inverse of a function as the relation we obtain by switching the domain and range of the function. Because of this definition, you can find an inverse by switching the roles of x and y in an equation. For example, consider the function g ( x ) = 2 x . This is the line y = 2 x. If we switch x and y , we get the equation x = 2 y. Dividing both sides by 2, we get y = 1/2 x . Therefore the functions g(x) = 2 x and y = 1/2 x are inverses. Using function notation, we can write y = 1/2 x as g -1 (x) = 1/2 x .
::非正式地,我们可以辨别函数的反向, 即我们通过切换函数的域和范围而获得的关系。 由于此定义, 您可以通过切换公式中的 x 和 y 的作用来找到反向。 例如, 考虑函数 g( x) = 2x 。 这是线y = 2x。 如果切换 x 和 y, 我们得到方程式 x = 2y。 将两侧切换为 2, 我们得到 y = 1/2 x 。 因此, 函数 g( x) = 2x 和 y = 1/2 x 是反向的。 使用函数符号, 我们可以写入 y = 1/2 x 作为 g-1 (x) = 1/2 x 。We can also analyze two functions and determine whether or not they are inverses. Look carefully at the formal :
::我们还可以分析两种功能并确定它们是否反向。Two functions f ( x ) and g ( x ) are inverses if and only if f(g(x)) = g(f(x)) = x .
::两个函数 f( x) 和 g( x) 是反向的, 只有if( g( x)) = g( f( x)) = x 。That means that just as we can find the inverse of a function by identifying one that fits the definition, we can verify a possible inverse by testing it against the definition.
::这意味着,正如我们能够通过确定符合定义的函数,找到一种功能的反面,我们也可以根据定义测试一种可能的反向,从而核实一种可能的反向。Examples
::实例Example 1
::例1Earlier, you were given a question about designing a box.
::早些时候,有人问你 设计一个盒子的问题。You were asked to design the new box for the iMp3 player that your company makes. You know that the iMp3 is 5.4in tall, 2.3in wide, and .5in thick.
::您被要求为您公司制作的 iMp3 播放器设计新框。 您知道 iMp3 高5. 4, 宽2.3, 厚5. 5。-
What is the volume of a box that will just fit the iMp3?
::一个符合iMp3的盒子的体积是多少?
Recall that the volume of a rectangular solid is given by:
::回顾矩形固体的体积是由: V=lwh给出的
::V=6.21英寸3-
If you knew that the iMp3 2 was soon to be released, and it had 10% less volume without changing height or width, could you prepare a box for it?
::如果你知道iMp3 2 很快即将发布, 且其体积少10%而不改变高度或宽度, 你能准备一个盒子吗?
The missing dimension for the new box is height:
::新框缺少的尺寸是高度: 9(6. 21) = 5. 4. 3}h
::h=45英寸-
Can you identify the inverse functions that might be applicable in this scenario?
::您能否确定可能适用于此情景的反函数 ?
Two inverse functions used here are: %20%3D%20(l%20%5Ccdot%20w)%20%5Ccdot%20h"> and .
::这里使用的两种反函数是: V=(lw) h 和 h(v) =vlw。
Verify that the two functions are inverses: Let and assume a base area of .
::验证这两个函数是反向的 : Let h=2 并假设基面积为 6 。==>
::V(2)=62 V(2)=12==>
::h( 12) = 12/6 h( 12) = 2This checks out, as .
::检查结果为 V(h(2))=2=h(V(2))。Example 2
::例2In the United States, we measure temperature using the Fahrenheit scale. In other countries, people use the Celsius scale. The equation C = 5/9 ( F - 32) can be used to find C, the Celsius temperature, given F , the Fahrenheit temperature. If we write this equation using function notation, we have . The input of the function is a Fahrenheit temperature, and the output is a Celsius temperature. This function allows us to convert a Fahrenheit temperature into Celsius.
::在美国,我们用华氏级测量温度。 在其他国家,人们使用摄氏级。 方程式 C = 5/9 (F - 32) 可以用来查找 C, 摄氏温度, 给F, 给F, 法氏温度。 如果我们用函数符号来写这个方程式, 我们的输入值是华氏温度, 输出值是摄氏度。 这个函数允许我们将华氏温度转换为摄氏度 。-
Identify the inverse function of the equation above to get one that will convert Celsius to Fahrenheit.
::识别上面方程式的反函数, 以获得一个能将摄氏度转换为华氏值的方程式 。
Fahrenheit to Celsius:
::华氏至摄氏度:C=59(F-32)Start by isolating F:
::以孤立 F 开始 :If we write this equation using function notation, we get . For this function, the input is the Celsius temperature, and the output is the Fahrenheit temperature.
::如果我们使用函数符号写入此方程式, 我们就会得到 f( x) = 95x+32。 对于此函数, 输入值为摄氏温度, 输出值为 Fahrenheit 温度 。-
Use the Celsius to Fahrenheit equation to convert 0 degrees Celsius into Fahrenheit.
::用摄氏度到华氏方程 将0摄氏度转换成华氏度
If it is 0 degrees Celsius, then we have:
::如果是0摄氏度,那么我们有:x=0,f(0)=95(0)+32=0+32=320 degrees Celsius = 32 degrees Fahrenheit
::0摄氏度=32华氏度Example 3
::例3Find the inverse of each function.
::查找每个函数的反向 。-
f(x)
= 5x - 8
::f(x) = 5x-8
First write the function using “ y =” notation, then interchange x and y :
::3⁄4 ̄ ̧漯Bf(x) = 5x - 8 → y = 5x - 8 → x = 5y - 8
::f(x) = 5x-8 y = 5x-8x x = 5y-8Then isolate y :
::然后孤立 y :-
f(x)
= x
3
:fx) = x3
Follow the same process as part 'a':
::遵循相同的程序作为“a”部分:First write the function using “ y= ”: f ( x ) = x 3 y = x 3 Now interchange x and y x = y 3 Now isolate y : Because of the definition of inverse, the graphs of inverses are reflections across the line y = x . The graph below shows and on the same graph, along with the reflection line y = x .
::由于反向定义,反向图是横线y=x的反射图。下图在同一图中显示t(x)=59(x-32)和f(x)=95x+32,以及反射线y=x。* A note about graphing with software or a graphing calculator: if you look at the graph above, you can see that the lines are reflections over the line y = x . However, if you do not view the graph in a window that shows equal scales of the x- and y- axes, the graph may not look like this.
::* 关于用软件或图形计算器绘制图的注释:如果您查看上面的图表,您可以看到这些线条是线y=x的反射。然而,如果您在显示 X 和 y 轴等比例的窗口中不查看图形,则该图可能不会像这样。Example 4
::例4Use composition of functions to determine if f ( x ) = 2 x + 3 and g(x) = 3 x - 2 are inverses.
::使用函数的构成来确定 f( x) = 2x + 3 和 g( x) = 3x - 2 是反向的 。The functions are not inverses.
::函数不是反向的 。We only need to check one of the compositions:
::我们只需要检查其中的其中一种成分:
::f( g( x)) = f( 3x-2) =2( 3x-2) =2( 3x-2) +3_6x-2) +3_6x-4+3_6x- 1xxExample 5
::例5If , find and determine whether f(x) is invertible.
::如果 f( x) =x+12, 则查找 f- 1 (x) 并确定 f( x) 是否不可逆 。
:xx) =x+12y=x+12
::x=y+12 x=y+12(square both sides)
::x2=(y+12)2 (两边平方)(simplify)
::x2=y+12(简化)
::x2 - 12=y
::x2 - 12=f(x)
::f- 1 (x) =x2 - 12In order for a function to be invertible, the inverse of the function must also be a function.
::为使一项职能可以倒置,该职能的反向也必须是一个职能。The equation is a parabola with vertex (0, -12), it is indeed a function.
::等式- 1 (x) =x2 - 12 是带有顶点( 0, - 12) 的抛物线, 确实是一个函数 。Therefore f(x) is invertible.
::因此f(x)是不可倒置的。Example 6
::例6If , find and determine whether f(x) is invertible.
::如果f(x) = (6) 4,(8) -12,(-2,22),(10,-10) , 找到 f-1(x) , 并确定 f(x) 是否不可倒置 。Just as when finding the inverse with an equation, exchange x and y.
::就像找到一个方程的反向, 交换 x 和 y 一样。The ordered pairs (x, y) become (y, x)
::定购的对等(x, y)变成(y, x)
::f(x) = (6) 4,(8) -12,(-2,22),(10,-10)
::f -1(x)=(4,6),(-12,8),(22,-2),(-10,10)In order for a function to be invertible, the inverse of the function must also be a function.
::为使一项职能可以倒置,该职能的反向也必须是一个职能。The point set: has no x terms with more than 1 associated y value, so it is also a function.
::点集: f-1(x) =( 4, 6), (- 12, 8), (22, -2), (- 10, 10) 没有超过 1 y 值的x 条件, 所以它也是一个函数 。Therefore f(x) is invertible.
::因此f(x)是不可倒置的。Review
::回顾State if the given functions are inverses of each other:
::如果给定的职能是相互对立的,请说明:-
::g( x) = 4- 32xf( x) = 12x+32 -
%20%3D%20%5Cfrac%20%7B-12%20-%202n%7D%7B3%7D%20%5Cto%20f
%20%3D%20%5Cfrac%7B-5%20%2B%206n%7D%7B5%7D">
::g+12-2n3f
=5+6n5
-
%20%3D%20%5Cfrac%7B-16%20%2B%20n%7D%7B4%7D%20%5Cto%20g
%20%3D%204n%2B%2016">
::f16+n4g
=4n+16
-
%20%3D%20(29n%20-%202)%5E3%20%5Cto%20g
%20%3D%20%5Cfrac%7B4%20%2B%5Csqrt%5B3%5D%7B4n%7D%7D%7B2%7D">
::f= (29n-2) 3g
= 4+4n32
-
::g( x) 2x- 1f( x) 2x+1
Find the inverse of each function:
::查找每个函数的反向 :-
::h(x)=x3-3-3 -
:xx)=4x
Find the inverse of each function. Then graph the function and its inverse.
::查找每个函数的反向。然后绘制函数及其反向图。-
:xx)%1 - 15x
-
::g(x)=1x-1 -
:xx)%2x3+1
Find the inverse of each function:
::查找每个函数的反向 :Find the error in the following problem/solution:
::在以下问题/解决方案中查找错误 :-
Given
find
Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:
::给定 f( x) =x- 10x 查找 f- 1 (x) 步 1 : y=x- 10x 步 1: y= 10x 步 2: x= y- 10x 步 3 x (x) = (y- 10x) 步 4 x2= y- 10 步 5 : x2+10 = 6 f- 1 (x) = x2+10 步 : f- 1 (x) = x2+10
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
What is the volume of a box that will just fit the iMp3?