10.2 在(h、k)处带有静脉排的帕拉波拉斯(Perabolas)
Section outline
-
Your homework assignment is to find the focus of the parabola . You say the focus is . Banu says the focus is . Carlos says the focus is . Which one of you is correct?
::您的作业任务是找到抛物线( x+4) 2\\\\\\\\\\\\\\\\\\5\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Parabolas with Vertex at (h, k)
::在(h, k) 时使用静脉排(Vetex)You have already learned that don’t always have their vertex at . In this concept, we will address parabolas where the vertex is , learn how to find the focus, directrix and graph.
::您已经知道, 他们的顶点并不总是在 0,0 。 在这个概念中, 我们将解决顶点所在的parabolas (h,k) , 学习如何找到焦点、 方向和图表 。Recall that the equation of a parabola is or and the vertex is on the origin. Also, recall that the vertex form of a parabola is . Combining the two, we can find the vertex form for conics.
::回顾抛物线的方程是 x2=4py 或 y2= 4px, 顶点在原位。 另外, 提醒注意抛物线的顶点形式是 y=a( x-h) 2+k。 将两者结合起来, 我们能找到二次曲线的顶点形式 。
::y=a (x-h) 2+k 和 x2= 4pySolve 的第一个 (x-h) 2. (x-h) 2= 1a(y-k) 我们发现 4p= 1a. (x-h) 2= 4p(y-k)If the parabola is horizontal, then the equation will be . Notice, that even though the orientation is changed, the and values remain with the and values, respectively.
::如果抛物线是水平的,则方程将是 (y-k)2=4p(x-h) 。 注意, 即使方向有所改变, h 和 k 值仍分别与 x 和 y 值相同 。Finding the focus and directrix are a little more complicated. Use the extended table below to help you find these values.
::查找焦点和指向比较复杂。 使用下面的扩展表格来帮助您查找这些值 。Notice that the way we find the focus and directrix does not change whether is positive or negative.
::注意我们找到焦点和指针的方式 不会改变 p 是正是负Let's analyze the equation . We'll find the vertex, axis of , focus, and directrix. Then, we'll determine if the function opens up, down, left or right.
::让我们分析方程 (y- 1) 2=8( x+ 3) 。 我们会找到顶点、 轴、 焦点和指向。 然后, 我们会确定函数向上、 向下、 向左或向右打开 。First, because is squared, we know that the parabola will open to the left or right. We can conclude that the parabola will open to the right because 8 is positive, meaning that is positive. Next, find the vertex. Using the general equation, , the vertex is and the axis of symmetry is . Setting , we have that . Adding to the -value of the vertex, we get the focus, . Subtracting from the -value of the vertex, we get the directrix, .
::首先,因为y是正方形, 我们知道抛物线会向左或右打开。 我们可以得出结论, 抛物线会向右打开, 因为 8 是正值, 意味着 p 是正值 。 接下来, 找到顶点 。 使用一般方程, (y- k) 2= 4p( x- h) , 顶点是 (- 3, 1) , 而对称轴是 y= 1 。 设置 4p= 8, 我们有p=2 。 将 p 添加到顶点的 x 值上, 我们得到焦点, (-1) 。 从顶点的 x 值中减去 p , 我们得到直线, x = 5 。Let's graph the parabola from the problem above . Plot the vertex, axis of symmetry, focus, and directrix.
::让我们从上面的问题绘制抛物线图。 绘制顶点、 对称轴、 焦点轴和直线轴 。First, plot all the critical values we found earlier . Then, determine a set of symmetrical points that are on the parabola to make sure your curve is correct. If , then is either -7 or 9. This means that the points and are both on the parabola.
::首先,绘制我们先前发现的所有关键值。 然后, 确定在抛物线上的一组对称点以确保您的曲线正确。 如果 x=5, 那么 y 是 - 7 或 9 。 这意味着这些点( 5, - 7) 和 ( 5, 9) 都在 抛物线上 。It is important to note that parabolas with a horizontal orientation are not functions because they do not pass the vertical line test.
::必须指出,横向方向的parabolas不是功能,因为它们没有通过垂直线测试。The vertex of a parabola is and the directrix is . Let's find the equation of the parabola.
::抛物线的顶部是 (-2,4) , 直线是 Y= 7 。 让我们找到抛物线的方程 。First, let’s determine the orientation of this parabola. Because the directrix is horizontal, we know that the parabola will open up or down (see table/pictures above). We also know that the directrix is above the vertex, making the parabola open down and will be negative (plot this on an plane if you are unsure).
::首先,让我们来决定这个抛物线的方向。 由于直线是水平的,我们知道抛物线会向上或向下打开(见上文表格/图片 ) 。 我们还知道,直线线在顶端,使抛物线向下打开,p将是负的(如果不确定的话,在X-y平面上绘制这个图 ) 。To find , we can use the vertex, and the equation for a horizontal directrix, .
::要找到p, 我们可以使用顶点, (h, k) 和横向直线的方程, y=k- p 。
::7=4-p3p remember, p是负的, 因为抛物线向下偏向。- 3=pNow, using the general form, , we can find the equation of this parabola.
::现在,使用(x-h)2=4p(y-k)的一般形式,我们可以找到这个抛物线的方程式。
:-(-2))2=4(-3
-4(x+2)2)12(y-4)
Examples
::实例Example 1
::例1Earlier, you were asked to determine which student is correct.
::早些时候,有人要求你确定哪个学生是正确的。This parabola is of the form . From the table earlier in this lesson, we can see that the focus of a parabola of this form is . So now we have to find h , k , and p .
::此抛物线为表( x-h) 2= 4p(y-k) 。 从本课前面的表格中,我们可以看到这种抛物线的焦点是 (h, k+p) 。 所以我们现在必须找到 h, k 和 p。If we compare to , we see that:
::如果我们比较 (x+4) 212(y- 5) 到 (x- h) 2= 4p(y- k), 我们可以看到 :-
or
::4 h 或 h 4 -
or
::- 12=4p或p3 -
::5=k 5=k
From these facts we can find .
::从这些事实中我们可以找到 k+p=5+(-3)=2。Therefore, the focus of the parabola is and Carlos is correct.
::因此,抛物线的焦点是(-4,2),而Carlos的焦点是正确的。Example 2
::例2Find the vertex, focus, axis of symmetry and directrix of .
::查找(x+5)2=2(y+2)的顶部、焦点、对称轴和直线轴。The vertex is and the parabola opens up because is positive and is squared. , making The focus is or , the axis of symmetry is , and the directrix is or .
::顶点是(-5,-2),抛物线打开是因为p是正数,x是正数。 4p=2, 制成p=12。 焦点是(-5,-2+2)或(-5,0),对称轴是x+5, 直线是y2-12 或y212。Example 3
::例3Graph the parabola from Example 2.
::从例2中绘制抛物线图。Example 4
::例4Find the equation of the parabola with vertex and focus .
::找到有顶层(-5)和焦点(-8)的抛物线方程式。The vertex is , so and . The focus is , meaning that that parabola will be horizontal. We know this because the -values of the vertex and focus are both -1. Therefore, is added or subtracted to .
::顶点是 (-5, - 1), 所以 h5 和 k1。 焦点是 (-8, - 1) , 意指 parbola 将是水平的。 我们知道这一点, 因为顶点和焦点的 Y 值是 - 1 。 因此, p 被添加或减去到 h 。we can infer that and
:h+p,k)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Therefore, the equation is .
::因此,等式是(y-(-1)2=4(-3)(x-(-5))__(y+1)2=12(x+5)。Review
::回顾Find the vertex, focus, axis of symmetry, and directrix of the parabolas below.
::找到以下抛物线的顶部、焦点、对称轴和直线。-
:x+1)2%3(y-6)
-
:x-3-3)2=y-7
-
:y+2)2=8(x+1)
-
::y210(x- 3) -
:x+6)2=4(y+8)
-
:y-55)212x
-
Graph the parabola from #1.
::从 # 1 绘制抛物线图。 -
Graph the parabola from #2.
::从 # 2 绘制抛物线图。 -
Graph the parabola from #4.
::从 # 4 绘制抛物线图。 -
Graph the parabola from #5.
::从 # 5 绘制抛物线图。
Find the equation of the parabola given the vertex and either the focus or directrix.
::根据顶点和焦点或指向来查找抛物线的方程。-
vertex:
, focus:
::顶点2,-1),重点
2,-4)
-
vertex:
, directrix:
::顶点- 3, 6), 指向: x=2
-
vertex:
, directrix:
::顶点: (6,10),指针:y=9.5 -
Challenge
focus:
, directrix:
::挑战焦点-1,-2), 指向:x=3
-
Extension
Rewrite the equation of the parabola,
, in standard form by completing the square. Then, find the vertex.
::扩展名通过完成方形以标准格式重写抛物线( x2-8x+2y+22=0)的方程。然后找到顶点。
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
or