章节大纲

  • Your homework assignment is to find the focus of the parabola ( x + 4 ) 2 = 12 ( y 5 ) . You say the focus is ( 4 , 5 ) . Banu says the focus is ( 0 , 3 ) . Carlos says the focus is ( 4 , 2 ) . Which one of you is correct?
    ::您的作业任务是找到抛物线( x+4) 2\\\\\\\\\\\\\\\\\\5\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    Parabolas with Vertex at (h, k)
    ::在(h, k) 时使用静脉排(Vetex)

    You have already learned that don’t always have their vertex at ( 0 , 0 ) . In this concept, we will address parabolas where the vertex is ( h , k ) , learn how to find the focus, directrix and graph.
    ::您已经知道, 他们的顶点并不总是在 0,0 。 在这个概念中, 我们将解决顶点所在的parabolas (h,k) , 学习如何找到焦点、 方向和图表 。

    Recall that the equation of a parabola is x 2 = 4 p y or y 2 = 4 p x and the vertex is on the origin. Also, recall that the  vertex form of a parabola is y = a ( x h ) 2 + k . Combining the two, we can find the vertex form for conics.
    ::回顾抛物线的方程是 x2=4py 或 y2= 4px, 顶点在原位。 另外, 提醒注意抛物线的顶点形式是 y=a( x-h) 2+k。 将两者结合起来, 我们能找到二次曲线的顶点形式 。

    y = a ( x h ) 2 + k   a n d   x 2 = 4 p y Solve the first for   ( x h ) 2 . ( x h ) 2 = 1 a ( y k ) We found that   4 p = 1 a . ( x h ) 2 = 4 p ( y k )

    ::y=a (x-h) 2+k 和 x2= 4pySolve 的第一个 (x-h) 2. (x-h) 2= 1a(y-k) 我们发现 4p= 1a. (x-h) 2= 4p(y-k)

    If the parabola is horizontal, then the equation will be ( y k ) 2 = 4 p ( x h ) . Notice, that even though the orientation is changed, the h and k values remain with the x and y values, respectively.
    ::如果抛物线是水平的,则方程将是 (y-k)2=4p(x-h) 。 注意, 即使方向有所改变, h 和 k 值仍分别与 x 和 y 值相同 。

    Finding the focus and directrix are a little more complicated. Use the extended table below to help you find these values.
    ::查找焦点和指向比较复杂。 使用下面的扩展表格来帮助您查找这些值 。

    lesson content

    Notice that the way we find the focus and directrix does not change whether p is positive or negative.
    ::注意我们找到焦点和指针的方式 不会改变 p 是正是负

    Let's analyze the equation ( y 1 ) 2 = 8 ( x + 3 ) . We'll find the vertex, axis of , focus, and directrix. Then, we'll determine if the function opens up, down, left or right.
    ::让我们分析方程 (y- 1) 2=8( x+ 3) 。 我们会找到顶点、 轴、 焦点和指向。 然后, 我们会确定函数向上、 向下、 向左或向右打开 。

    First, because y is squared, we know that the parabola will open to the left or right. We can conclude that the parabola will open to the right because 8 is positive, meaning that p is positive. Next, find the vertex. Using the general equation, ( y k ) 2 = 4 p ( x h ) , the vertex is ( 3 , 1 ) and the axis of symmetry is y = 1 . Setting 4 p = 8 , we have that p = 2 . Adding p to the x -value of the vertex, we get the focus, ( 1 , 1 ) . Subtracting p from the x -value of the vertex, we get the directrix, x = 5 .
    ::首先,因为y是正方形, 我们知道抛物线会向左或右打开。 我们可以得出结论, 抛物线会向右打开, 因为 8 是正值, 意味着 p 是正值 。 接下来, 找到顶点 。 使用一般方程, (y- k) 2= 4p( x- h) , 顶点是 (- 3, 1) , 而对称轴是 y= 1 。 设置 4p= 8, 我们有p=2 。 将 p 添加到顶点的 x 值上, 我们得到焦点, (-1) 。 从顶点的 x 值中减去 p , 我们得到直线, x = 5 。

    Let's graph the parabola from the problem above . Plot the vertex, axis of symmetry, focus, and directrix.
    ::让我们从上面的问题绘制抛物线图。 绘制顶点、 对称轴、 焦点轴和直线轴 。

    First, plot all the critical values we found earlier . Then, determine a set of symmetrical points that are on the parabola to make sure your curve is correct. If x = 5 , then y is either -7 or 9. This means that the points ( 5 , 7 ) and ( 5 , 9 ) are both on the parabola.
    ::首先,绘制我们先前发现的所有关键值。 然后, 确定在抛物线上的一组对称点以确保您的曲线正确。 如果 x=5, 那么 y 是 - 7 或 9 。 这意味着这些点( 5, - 7) 和 ( 5, 9) 都在 抛物线上 。

    lesson content

    It is important to note that parabolas with a horizontal orientation are not functions because they do not pass the vertical line test.
    ::必须指出,横向方向的parabolas不是功能,因为它们没有通过垂直线测试。

    The vertex of a parabola is ( 2 , 4 ) and the directrix is y = 7 . Let's find the equation of the parabola.
    ::抛物线的顶部是 (-2,4) , 直线是 Y= 7 。 让我们找到抛物线的方程 。

    First, let’s determine the orientation of this parabola. Because the directrix is horizontal, we know that the parabola will open up or down (see table/pictures above). We also know that the directrix is above the vertex, making the parabola open down and p will be negative (plot this on an x y plane if you are unsure).
    ::首先,让我们来决定这个抛物线的方向。 由于直线是水平的,我们知道抛物线会向上或向下打开(见上文表格/图片 ) 。 我们还知道,直线线在顶端,使抛物线向下打开,p将是负的(如果不确定的话,在X-y平面上绘制这个图 ) 。

    To find p , we can use the vertex, ( h , k ) and the equation for a horizontal directrix, y = k p .
    ::要找到p, 我们可以使用顶点, (h, k) 和横向直线的方程, y=k- p 。

    7 = 4 p 3 = p Remember ,   p   is negative because of the downward orientation of the parabola . 3 = p

    ::7=4-p3p remember, p是负的, 因为抛物线向下偏向。- 3=p

    Now, using the general form, ( x h ) 2 = 4 p ( y k ) , we can find the equation of this parabola.
    ::现在,使用(x-h)2=4p(y-k)的一般形式,我们可以找到这个抛物线的方程式。

    ( x ( 2 ) ) 2 = 4 ( 3 ) ( y 4 ) ( x + 2 ) 2 = 12 ( y 4 )

    :伤心-(-2))2=4(-3是的是的-4(x+2)2)12(y-4)

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to determine which student is correct. 
    ::早些时候,有人要求你确定哪个学生是正确的。

    This parabola is of the form ( x h ) 2 = 4 p ( y k ) . From the table earlier in this lesson, we can see that the focus of a parabola of this form is ( h , k + p ) . So now we have to find h , k , and p .
    ::此抛物线为表( x-h) 2= 4p(y-k) 。 从本课前面的表格中,我们可以看到这种抛物线的焦点是 (h, k+p) 。 所以我们现在必须找到 h, k 和 p。

    If we compare ( x + 4 ) 2 = 12 ( y 5 ) to ( x h ) 2 = 4 p ( y k ) , we see that:
    ::如果我们比较 (x+4) 212(y- 5) 到 (x- h) 2= 4p(y- k), 我们可以看到 :

    1. 4 = h or h = 4
      ::4 h 或 h 4
    2. 12 = 4 p or p = 3
      ::- 12=4p或p3
    3. 5 = k
      ::5=k 5=k

    From these facts we can find k + p = 5 + ( 3 ) = 2 .
    ::从这些事实中我们可以找到 k+p=5+(-3)=2。

    Therefore, the focus of the parabola is ( 4 , 2 ) and Carlos is correct.
    ::因此,抛物线的焦点是(-4,2),而Carlos的焦点是正确的。

    Example 2
    ::例2

    Find the vertex, focus, axis of symmetry and directrix of ( x + 5 ) 2 = 2 ( y + 2 ) .
    ::查找(x+5)2=2(y+2)的顶部、焦点、对称轴和直线轴。

    The vertex is ( 5 , 2 ) and the parabola opens up because p is positive and x is squared. 4 p = 2 , making p = 1 2 .  The focus is ( 5 , 2 + 2 ) or ( 5 , 0 ) , the axis of symmetry is x = 5 , and the directrix is y = 2 1 2 or y = 2 1 2 .
    ::顶点是(-5,-2),抛物线打开是因为p是正数,x是正数。 4p=2, 制成p=12。 焦点是(-5,-2+2)或(-5,0),对称轴是x+5, 直线是y2-12 或y212。

    Example 3
    ::例3

    Graph the parabola from Example 2.
    ::从例2中绘制抛物线图。

    lesson content

    Example 4
    ::例4

    Find the equation of the parabola with vertex ( 5 , 1 ) and focus ( 8 , 1 ) .
    ::找到有顶层(-5)和焦点(-8)的抛物线方程式。

    The vertex is ( 5 , 1 ) , so h = 5 and k = 1 . The focus is ( 8 , 1 ) , meaning that that parabola will be horizontal. We know this because the y -values of the vertex and focus are both -1. Therefore, p is added or subtracted to h .
    ::顶点是 (-5, - 1), 所以 h5 和 k1。 焦点是 (-8, - 1) , 意指 parbola 将是水平的。 我们知道这一点, 因为顶点和焦点的 Y 值是 - 1 。 因此, p 被添加或减去到 h 。

    ( h + p , k ) ( 8 , 1 ) we can infer that h + p = 8 5 + p = 8 and p = 3
    :伤心h+p,k)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    Therefore, the equation is ( y ( 1 ) ) 2 = 4 ( 3 ) ( x ( 5 ) ) ( y + 1 ) 2 = 12 ( x + 5 ) .
    ::因此,等式是(y-(-1)2=4(-3)(x-(-5))__(y+1)2=12(x+5)。

    Review
    ::回顾

    Find the vertex, focus, axis of symmetry, and directrix of the parabolas below.
    ::找到以下抛物线的顶部、焦点、对称轴和直线。

    1. ( x + 1 ) 2 = 3 ( y 6 )
      :伤心x+1)2%3(y-6)
    2. ( x 3 ) 2 = y 7
      :伤心x-3-3)2=y-7
    3. ( y + 2 ) 2 = 8 ( x + 1 )
      :伤心y+2)2=8(x+1)
    4. y 2 = 10 ( x 3 )
      ::y210(x- 3)
    5. ( x + 6 ) 2 = 4 ( y + 8 )
      :伤心x+6)2=4(y+8)
    6. ( y 5 ) 2 = 1 2 x
      :伤心y-55)212x
    7. Graph the parabola from #1.
      ::从 # 1 绘制抛物线图。
    8. Graph the parabola from #2.
      ::从 # 2 绘制抛物线图。
    9. Graph the parabola from #4.
      ::从 # 4 绘制抛物线图。
    10. Graph the parabola from #5.
      ::从 # 5 绘制抛物线图。

    Find the equation of the parabola given the vertex and either the focus or directrix.
    ::根据顶点和焦点或指向来查找抛物线的方程。

    1. vertex: ( 2 , 1 ) , focus: ( 2 , 4 )
      ::顶点伤心2,-1),重点伤心2,-4)
    2. vertex: ( 3 , 6 ) , directrix: x = 2
      ::顶点伤心- 3, 6), 指向: x=2
    3. vertex: ( 6 , 10 ) , directrix: y = 9.5
      ::顶点: (6,10),指针:y=9.5
    4. Challenge focus: ( 1 , 2 ) , directrix: x = 3
      ::挑战焦点伤心-1,-2), 指向:x=3
    5. Extension Rewrite the equation of the parabola, x 2 8 x + 2 y + 22 = 0 , in standard form by completing the square. Then, find the vertex.
      ::扩展名通过完成方形以标准格式重写抛物线( x2-8x+2y+22=0)的方程。然后找到顶点。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。