10.3 以原产地为中心圆环
Section outline
-
You draw a circle that is centered at the origin. You measure the diameter of the circle to be 32 units. Does the point lie on the circle?
::您绘制的圆以原点为中心。 您测量圆的直径为 32 单位。 点( 14, 8) 是否在圆上 ?Circles Centered at the Origin
::以起源居中圆圆Until now, your only reference to circles was from geometry. A circle is the set of points that are equidistant (the radius ) from a given point (the center ). A line segment that passes through the center and has endpoints on the circle is a diameter .
::直到现在,您对圆圈的唯一引用来自几何。一个圆圈是从给定点(中点)到给定点(中点)的等距(半径)的一组点。横穿中间并有圆圈端点的线段是直径。Now, we will take a circle and place it on the plane to see if we can find its equation. In this concept, we are going to place the center of the circle on the origin.
::现在,我们将进行一个圆圈,然后把它放在X-y平面上,看看我们能否找到它的方程。在这个概念中,我们将把圆圈的中心放在原点上。Finding the Equation of a Circle
::查找圆形的等量Step 1: On a piece of graph paper, draw an plane. Using a compass, draw a circle, centered at the origin that has a radius of 5. Find the point on the circle and draw a right triangle with the radius as the hypotenuse.
::第1步:在一张图纸上,绘制一个 x -y 平面。使用一个罗盘,绘制一个圆形,以半径为 5 的原点为中心。在圆上找到点( 3, 4) , 并绘制一个以半径为下限的右三角形 。Step 2: Using the length of each side of the right triangle, show that the Pythagorean Theorem is true.
::第2步:使用右三角形每一侧的长度,显示毕达哥里安定理词是真实的。Step 3: Now, instead of using , change the point to so that it represents any point on the circle. Using to represent the radius, rewrite the Pythagorean Theorem.
::步骤 3 : 现在, 不使用 (3, 4) , 将点更改为 (x,y) , 使其代表圆上的任何点。 使用 r 代表半径, 重写 Pytagorean Theorem 。The equation of a circle , centered at the origin, is , where is the radius and is any point on the circle.
::圆的方程式,以原圆为中心,是 x2+y2=r2,其中 r 是半径, (x,y) 是圆上的任何点。Let's find the radius of and graph.
::让我们找到 x2+y2=16 和图形的半径 。To find the radius, we can set , making . is not -4 because it is a distance and distances are always positive. To graph the circle, start at the origin and go out 4 units in each direction and connect.
::要找到半径, 我们可以设置 16 = r2, make r= 4. r is not - 4, 因为它是一个距离, 距离总是正数。 要绘制圆形图, 从起始点开始, 从每个方向取出 4 个单位并连接 。Now, let's find the equation of the circle with center at the origin and passes through .
::现在,让我们找到圆形的方程式, 以中心为起点, 并通过(-7, -7) 。Using the equation of the circle, we have: . Solve for .
::使用圆的方程式,我们有-7)2+(-7)2=r2. r2 解决 r2 。
:-7)2+(-7)2=r249+49=r298=r2
So, the equation is . The radius of the circle is .
::方程式是 x2+y2=98。圆的半径是 r=98=72。Finally, let's determine if the point is on the circle .
::最后,让我们确定点(9,-11)是否在x2+y2=225圆上。Substitute the point in for and and see if it equals 225.
::替换 x 和 y 的点, 看看它是否等于 225 。The point is not on the circle.
::点不在圆圈上 。Examples
::实例Example 1
::例1Earlier, you were asked to determine if the point lies on the circle that is centered at the origin and has a diameter of 32 units.
::早些时候,有人要求你确定点(14,8)是否位于以原点为中心、直径为32个单位的圆上。From this lesson, you know that the equation of a circle that is centered at the origin is , where is the radius and is any point on the circle.
::从此课中, 您知道, 以源代码为中心的一个圆的方程式是 x2+y2=r2, 其中 r 是半径, (x,y) 是圆上的任何点 。With the point , and . We are given the diameter, but we need the radius. Recall that the radius is half the diameter, so the radius is .
::点数( 14, 8) x=14 和 Y=8 。 我们得到了直径, 但我们需要半径。 提醒注意半径是直径的一半, 所以半径是 322=16 。Plug these values into the equation of the circle. If they result in a true statement, the point lies on the circle.
::将这些值插入圆的方程中。如果这些值产生真实的语句,则点在圆上。
::x2+y2=r2142+82=? 162196+64=? 256260256Therefore the point does not lie on the circle.
::因此,问题不在于圆圈上。Example 2
::例2Graph and find the radius of .
::图形并查找 x2+y2=4 的半径。
::r=4=2Example 3
::例3Find the equation of the circle with a radius of .
::查找圆形的方程,半径为65。Plug in for in
::x2+y2=r2 中 r 的 r 在65 中插插件
::x2+y2 = (652)2x2+y2=62*(5)2x2+y2=365x2+y2=180Example 4
::例4Find the equation of the circle that passes through .
::查找通过(5,8)的圆形的方程。Plug in for and , respectively.
::x和y分别插在(5,8)内。
::52+82=r225+64=r289=r2The equation is
::方程式是 x2+y2=89Example 5
::例5Determine if is on the circle .
::确定是否 (- 10, 7) 在 x2+y2=149 圆上 。Plug in to see if it is a valid equation.
::插在(- 10, 7) 中, 看看它是否是一个有效的方程 。Yes, the point is on the circle.
::是的,重点是在圆圈上。Review
::回顾Graph the following circles and find the radius.
::绘制以下圆形图并找到半径。-
::x2+y2=9 -
::x2+y2=64 -
::x2+y2=8 -
::x2+y2=50 -
::2x2+2y2=162 -
::5x2+5y2=150
Write the equation of the circle with the given radius and centered at the origin.
::以给定半径写出圆形的方程式, 以原点为中心 。- 14
- 6
Write the equation of the circle that passes through the given point and is centered at the origin.
::写入圆的方程式,该方程式通过给定点,以原点为中心。Determine if the following points are on the circle, .
::确定以下点是否在圆上, x2+y2=74。Challenge In Geometry, you learned about tangent lines to a circle. Recall that the tangent line touches a circle at one point and is perpendicular to the radius at that point, called the point of tangency.
::在几何学的挑战中, 您学习到一个圆形的正切线。 回顾正切线在一个点上碰到一个圆形, 并且与那个点的半径垂直, 叫做切视点 。-
The equation of a circle is
with point of tangency
.
-
Find the slope of the radius from the center to
.
::查找半径的斜坡,从中间到(- 3, 1) 。 -
Find the perpendicular slope to (a). This is the slope of the tangent line.
::找到(a)的垂直斜坡。这是正切线的斜坡。 -
Use the slope from (b) and the given point to find the equation of the tangent line.
::使用 (b) 的斜坡和给定点查找正切线的方程。
::圆的方程式是x2+y2=10,并带有相干点(- 3, 1) 。 查找半径的斜度, 从中间到 (- 3, 1) 。 查找垂直斜度到 (a) 。 这是正切线的斜度。 使用从 (b) 和给定点的斜度来查找正切线的方形 。 -
Find the slope of the radius from the center to
.
-
Repeat the steps in #16 to find the equation of the tangent line to
with a point of tangency of
.
::重复 # 16 中的步骤, 以找到相切线的方程为 x2+y2=34, 相切点为( 3 5) 。
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -