Section outline

  • You draw a circle that is centered at the origin. You measure the diameter of the circle to be 32 units. Does the point ( 14 , 8 ) lie on the circle?
    ::您绘制的圆以原点为中心。 您测量圆的直径为 32 单位。 点( 14, 8) 是否在圆上 ?

    Circles Centered at the Origin
    ::以起源居中圆圆

    Until now, your only reference to circles was from geometry. A circle is the set of points that are equidistant (the radius ) from a given point (the center ). A line segment that passes through the center and has endpoints on the circle is a diameter .
    ::直到现在,您对圆圈的唯一引用来自几何。一个圆圈是从给定点(中点)到给定点(中点)的等距(半径)的一组点。横穿中间并有圆圈端点的线段是直径。

    Now, we will take a circle and place it on the x y plane to see if we can find its equation. In this concept, we are going to place the center of the circle on the origin.
    ::现在,我们将进行一个圆圈,然后把它放在X-y平面上,看看我们能否找到它的方程。在这个概念中,我们将把圆圈的中心放在原点上。

    Finding the Equation of a Circle
    ::查找圆形的等量

    Step 1: On a piece of graph paper, draw an x y plane. Using a compass, draw a circle, centered at the origin that has a radius of 5. Find the point ( 3 , 4 ) on the circle and draw a right triangle with the radius as the hypotenuse.
    ::第1步:在一张图纸上,绘制一个 x -y 平面。使用一个罗盘,绘制一个圆形,以半径为 5 的原点为中心。在圆上找到点( 3, 4) , 并绘制一个以半径为下限的右三角形 。

    lesson content

    Step 2: Using the length of each side of the right triangle, show that the Pythagorean Theorem is true.
    ::第2步:使用右三角形每一侧的长度,显示毕达哥里安定理词是真实的。

    Step 3: Now, instead of using ( 3 , 4 ) , change the point to ( x , y ) so that it represents any point on the circle. Using r to represent the radius, rewrite the Pythagorean Theorem.
    ::步骤 3 : 现在, 不使用 (3, 4) , 将点更改为 (x,y) , 使其代表圆上的任何点。 使用 r 代表半径, 重写 Pytagorean Theorem 。

    The equation of a circle , centered at the origin, is x 2 + y 2 = r 2 , where r is the radius and ( x , y ) is any point on the circle.
    ::圆的方程式,以原圆为中心,是 x2+y2=r2,其中 r 是半径, (x,y) 是圆上的任何点。

    Let's find the radius of x 2 + y 2 = 16 and graph.
    ::让我们找到 x2+y2=16 和图形的半径 。

    To find the radius, we can set 16 = r 2 , making r = 4 . r is not -4 because it is a distance and distances are always positive. To graph the circle, start at the origin and go out 4 units in each direction and connect.
    ::要找到半径, 我们可以设置 16 = r2, make r= 4. r is not - 4, 因为它是一个距离, 距离总是正数。 要绘制圆形图, 从起始点开始, 从每个方向取出 4 个单位并连接 。

    Now, let's find the equation of the circle with center at the origin and passes through ( 7 , 7 ) .
    ::现在,让我们找到圆形的方程式, 以中心为起点, 并通过(-7, -7) 。

    Using the equation of the circle, we have: ( 7 ) 2 + ( 7 ) 2 = r 2 . Solve for r 2 .
    ::使用圆的方程式,我们有sad-7)2+(-7)2=r2. r2 解决 r2 。

    ( 7 ) 2 + ( 7 ) 2 = r 2 49 + 49 = r 2 98 = r 2

    :sad-7)2+(-7)2=r249+49=r298=r2

    So, the equation is x 2 + y 2 = 98 . The radius of the circle is r = 98 = 7 2 .
    ::方程式是 x2+y2=98。圆的半径是 r=98=72。

    Finally, let's determine if the point ( 9 , 11 ) is on the circle x 2 + y 2 = 225 .
    ::最后,让我们确定点(9,-11)是否在x2+y2=225圆上。

    Substitute the point in for x and y and see if it equals 225.
    ::替换 x 和 y 的点, 看看它是否等于 225 。

    9 2 + ( 11 ) 2 = 225 81 + 121 = ? 225 202 225

    The point is not on the circle.
    ::点不在圆圈上 。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to determine if  the point  ( 14 , 8 )  lies on the circle that is centered at the origin and has a diameter of 32 units.
    ::早些时候,有人要求你确定点(14,8)是否位于以原点为中心、直径为32个单位的圆上。

    From this lesson, you know that the equation of a circle that is centered at the origin is x 2 + y 2 = r 2 , where r is the radius and ( x , y ) is any point on the circle.
    ::从此课中, 您知道, 以源代码为中心的一个圆的方程式是 x2+y2=r2, 其中 r 是半径, (x,y) 是圆上的任何点 。

    With the point ( 14 , 8 ) , x = 14 and y = 8 . We are given the diameter, but we need the radius. Recall that the radius is half the diameter, so the radius is 32 2 = 16 .
    ::点数( 14, 8) x=14 和 Y=8 。 我们得到了直径, 但我们需要半径。 提醒注意半径是直径的一半, 所以半径是 322=16 。

    Plug these values into the equation of the circle. If they result in a true statement, the point lies on the circle.
    ::将这些值插入圆的方程中。如果这些值产生真实的语句,则点在圆上。

    x 2 + y 2 = r 2 14 2 + 8 2 = ? 16 2 196 + 64 = ? 256 260 256

    ::x2+y2=r2142+82=? 162196+64=? 256260256

    Therefore the point does not lie on the circle.
    ::因此,问题不在于圆圈上。

    Example 2
    ::例2

    Graph and find the radius of x 2 + y 2 = 4 .
    ::图形并查找 x2+y2=4 的半径。

    r = 4 = 2
    ::r=4=2

    Example 3
    ::例3

    Find the equation of the circle with a radius of 6 5 .
    ::查找圆形的方程,半径为65。

    Plug in 6 5 for r in x 2 + y 2 = r 2
    ::x2+y2=r2 中 r 的 r 在65 中插插件

    x 2 + y 2 = ( 6 5 ) 2 x 2 + y 2 = 6 2 ( 5 ) 2 x 2 + y 2 = 36 5 x 2 + y 2 = 180

    ::x2+y2 = (652)2x2+y2=62*(5)2x2+y2=365x2+y2=180

    Example 4
    ::例4

    Find the equation of the circle that passes through ( 5 , 8 ) .
    ::查找通过(5,8)的圆形的方程。

    Plug in ( 5 , 8 ) for x and y , respectively.
    ::x和y分别插在(5,8)内。

    5 2 + 8 2 = r 2 25 + 64 = r 2 89 = r 2

    ::52+82=r225+64=r289=r2

    The equation is x 2 + y 2 = 89
    ::方程式是 x2+y2=89

    Example 5
    ::例5

    Determine if ( 10 , 7 ) is on the circle x 2 + y 2 = 149 .
    ::确定是否 (- 10, 7) 在 x2+y2=149 圆上 。

    Plug in ( 10 , 7 ) to see if it is a valid equation.
    ::插在(- 10, 7) 中, 看看它是否是一个有效的方程 。

    ( 10 ) 2 + 7 2 = 149 100 + 49 = 149

    Yes, the point is on the circle.
    ::是的,重点是在圆圈上。

    Review
    ::回顾

    Graph the following circles and find the radius.
    ::绘制以下圆形图并找到半径。

    1. x 2 + y 2 = 9
      ::x2+y2=9
    2. x 2 + y 2 = 64
      ::x2+y2=64
    3. x 2 + y 2 = 8
      ::x2+y2=8
    4. x 2 + y 2 = 50
      ::x2+y2=50
    5. 2 x 2 + 2 y 2 = 162
      ::2x2+2y2=162
    6. 5 x 2 + 5 y 2 = 150
      ::5x2+5y2=150

    Write the equation of the circle with the given radius and centered at the origin.
    ::以给定半径写出圆形的方程式, 以原点为中心 。

    1. 14
    2. 6
    3. 9 2

    Write the equation of the circle that passes through the given point and is centered at the origin.
    ::写入圆的方程式,该方程式通过给定点,以原点为中心。

    1. ( 7 , 24 )
    2. ( 2 , 2 )
    3. ( 9 , 10 )

    Determine if the following points are on the circle, x 2 + y 2 = 74 .
    ::确定以下点是否在圆上, x2+y2=74。

    1. ( 8 , 0 )
    2. ( 7 , 5 )
    3. ( 6 , 6 )

    Challenge In Geometry, you learned about tangent lines to a circle. Recall that the tangent line touches a circle at one point and is perpendicular to the radius at that point, called the point of tangency.
    ::在几何学的挑战中, 您学习到一个圆形的正切线。 回顾正切线在一个点上碰到一个圆形, 并且与那个点的半径垂直, 叫做切视点 。

    1. The equation of a circle is x 2 + y 2 = 10 with point of tangency ( 3 , 1 ) .
      1. Find the slope of the radius from the center to ( 3 , 1 ) .
        ::查找半径的斜坡,从中间到(- 3, 1) 。
      2. Find the perpendicular slope to (a). This is the slope of the tangent line.
        ::找到(a)的垂直斜坡。这是正切线的斜坡。
      3. Use the slope from (b) and the given point to find the equation of the tangent line.
        ::使用 (b) 的斜坡和给定点查找正切线的方程。

      ::圆的方程式是x2+y2=10,并带有相干点(- 3, 1) 。 查找半径的斜度, 从中间到 (- 3, 1) 。 查找垂直斜度到 (a) 。 这是正切线的斜度。 使用从 (b) 和给定点的斜度来查找正切线的方形 。
    2. Repeat the steps in #16 to find the equation of the tangent line to x 2 + y 2 = 34 with a point of tangency of ( 3 , 5 ) .
      ::重复 # 16 中的步骤, 以找到相切线的方程为 x2+y2=34, 相切点为( 3 5) 。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。