10.7 以原产物为中心绘制超高光谱图
Section outline
-
Your homework assignment is to graph the 9 y 2 − 4 x 2 = 36 . What are the asymptotes and foci of your graph?
::您的作业任务是绘制 9y2 - 4x2=36 。 您的图表中什么是小数和小数 ?Graphing Hyperbolas
::超分层图We know that the resulting graph of a rational function is a hyperbola with two branches . A hyperbola is also a conic section. To create a hyperbola, you would slice a plane through two inverted cones, such that the plane is perpendicular to the bases of the cones.
::我们知道,理性函数的图解是具有两个分支的超大波拉。超大波拉也是一个二次曲线部分。要创建超大波拉,你可以通过两个反向的锥形切开一个平面,使该平面与锥形的底部垂直。By the conic definition, a hyperbola is the set of all points such that the of the differences of the distances from the foci is constant.
::根据二次曲线的定义,超重波是所有点的组合,因此与福子距离的差异是恒定的。Using the picture, any point, ( x , y ) on a hyperbola has the property, d 1 − d 2 = P , where P is a constant.
::使用图片时,超高波拉上的任何点(x,y)都具有该属性,即P为常数的 d1-d2=P。Comparing this to the ellipse, where d 1 + d 2 = P and the equation was x 2 a 2 + y 2 b 2 = 1 or x 2 b 2 + y 2 a 2 = 1 .
::将此比作椭圆, d1+d2=P 和方程式为 x2a2+y2b2=1 或 x2b2+y2a2=1 。For a hyperbola, then, the equation will be x 2 a 2 − y 2 b 2 = 1 or y 2 a 2 − x 2 b 2 = 1 . Notice in the vertical orientation of a hyperbola, the y 2 term is first. Just like with an ellipse, there are two vertices , on the hyperbola. Here, they are the two points that are closest to each other on the graph. The line through the vertices and foci is called the transverse axis . Its midpoint is the center of the hyperbola. In this concept, the center will be the origin. There will always be two branches for any hyperbola and two asymptotes.
::对于双曲线, 方程式将是 x2a2- y2b2=1 或 y2a2- x2b2=1 。 在双曲线的垂直方向中注意, y2 术语为第一。 就像 椭圆 一样, 在 双曲线上有两个顶点。 这里, 它们是图形上两个最接近的点 。 横脊和 foci 之间的线被称为横轴 。 其中点是高曲线的中心 。 在这个概念中, 中心将是源头 。 任何超曲线总是有两个分支 , 并且有两个小孔 。Let's graph x 2 64 − y 2 25 = 1 and then find the vertices, foci, and asymptotes.
::让我们绘制图 x264 -y225=1, 然后找到顶部、 foci 和 asymptotes 。First, this hyperbola has a horizontal transverse axis because the x 2 term is first. Also, with hyperbolas, the a and b term stay in place, but the x and y terms switch. a is not always greater than b .
::首先,这个超双曲线有一个横向反向轴, 因为 x2 术语是第一个 。 另外, 如果有超光子, a 和 b 术语将保持原位, 但 x 和 y 术语开关不总是大于 b 。 aisTherefore, a = √ 64 = 8 and b = √ 25 = 5 . To graph this hyperbola, go out 8 units to the left and right of the center and 5 units up and down to make a rectangle. The diagonals of this rectangle are the asymptotes.
::因此, a64=8 和 b25=5 。 要绘制此双曲线图, 请从中间的左边和右边出8个单位, 向上和向下出5个单位, 以形成矩形。 此矩形的对角是小行星 。Draw the hyperbola branches with the vertices on the transverse axis and the rectangle. Sketch the branches to get close to the asymptotes, but not touch them.
::绘制横轴和矩形上的双波形树枝。 将树枝拉伸以接近小行星, 但不触动它们 。The vertices are ( ± 8 , 0 ) and the asymptotes are y = ± 5 8 x (see pictures above. To find the foci, we use the Pythagorean Theorem, c 2 = a 2 + b 2 because the foci are further away from the center than the vertices.
::脊椎是 (8,0) , 微粒是 y58x( 见上文图片 。 要找到 foci, 我们使用 Pythagorean 理论, c2=a2+b2 , 因为 foci 离中心远比 verps 远 。c 2 = 64 + 25 = 89 c = √ 89
::c2=64+25=89c89The foci are ( ± √ 89 , 0 ) .
::焦点是(89,0)。Now, let's graph 36 y 2 − 9 x 2 = 324 and identify the foci.
::现在,让我们绘制36y2-9x2=324的图表, 并辨别方位。This equation is not in standard form. To rewrite it in standard form, the right side of the equation must be 1. Divide everything by 324.
::此方程式不是标准格式。 要重写标准格式, 方程式的右侧必须是 1. 将所有方程式除以324 。36 y 2 324 − 9 x 2 324 = 324 324 y 2 9 − x 2 36 = 1
::36y2324-9x2324=324324y29-x236=1Now, we can see that this is a vertical hyperbola, where a = 3 and b = 6 . Draw the rectangle, asymptotes, and plot the vertices on the y -axis.
::现在,我们可以看到,这是一个垂直的双曲线, a=3和b=6。 绘制矩形, 星状图, 并在 Y 轴上绘制顶部 。To find the foci, use c 2 = a 2 + b 2 .
::要找到 foci, 请使用 c2=a2+b2 。c 2 = 36 + 9 = 45 c = √ 45 = 3 √ 5
::c2=36+9=45c=45=35The foci are ( 0 , 3 √ 5 ) and ( 0 , − 3 √ 5 ) .
::方块是(0,35)和(0,35)。Finally, let's graph x 2 4 − y 2 4 = 1 and identify the asymptotes.
::最后,让我们用图表 x24 -y24=1 来识别小行星。This will be a horizontal hyperbola, because the x -term is first. a and b will both be 2 because √ 4 = 2 . Draw the square and diagonals to form the asymptotes.
::这将是一个水平双曲线, 因为 x 期是第一个。 a 和 b 将同时是 2 , 因为 '% 4= 2 。 绘制正方形和对角以形成小数 。The asymptotes are y = ± 2 2 x or y = x and y = − x .
::22x 或 y=x 和 yx 是 y22x 或 y=x 和 yx 。Important Note: The asymptotes and square are not a part of the function. They are included in graphing a hyperbola because it makes it easier to do so.
::重要注意: 微粒和正方形不是函数的一部分。 它们被包含在超大波拉的图形中, 因为这样更容易做到 。Also, when graphing hyperbolas, we are sketching each branch. We did not make a table of values to find certain points and then connect. You can do this, but using the square or rectangle with the asymptotes produces a pretty accurate graph and is much simpler.
::此外,在绘制超光谱图时,我们正在绘制每个分支的图。我们没有绘制一个数值表来查找某些点,然后连接。你可以做到这一点,但使用方形或与小行星的矩形来绘制一个非常准确的图表,并且简单得多。Examples
::实例Example 1
::例1Earlier, you were asked to find the asymptotes and foci of your graph.
::早些时候,你被要求 找到您的图表的微粒和角。First, we need to get the equation in the form y 2 a 2 − x 2 b 2 = 1 , so divide by 36.
::首先,我们需要以 y2a2-x2b2=1 的形式获得方程式, 所以除以 36 。9 y 2 − 4 x 2 = 36 9 y 2 36 − 4 x 2 36 = 36 36 y 2 4 − x 2 9 = 1
::9y2-4x2=369y236-4x236=3636y24-x29=1Now we can see that a 2 = 4 and b 2 = 9 , so a = 2 and b = 3 . Also, because the y -term comes first, the hyperbola is vertically oriented. Therefore, the asymptotes are y = − a b x and y = a b x .
::现在我们可以看到 a2=4 和 b2=9, 所以 a=2 和 b=3。 另外, 由于 Y 期先到, 双波拉是垂直方向的。 因此, 亚伯克斯和 y=abx 的微粒是 yabx 和 y=abx 。Substituting for a and b , we get y = − 2 3 x and y = 2 3 x .
::替换a和b, 我们得到y23x和y=23x。Finally, to find the foci, use c 2 = a 2 + b 2 .
::最后,要找到角,请使用 c2=a2+b2。c 2 = 4 + 9 = 13 c = √ 13
::c2=4+9=13c=13The foci are ( 0 , √ 13 ) and ( 0 , − √ 13 ) .
::焦点是(0,/13)和(0,____)。Example 2
::例2Find the vertices, foci, and asymptotes of y 2 − x 2 25 = 1 .
::查找 y2 - x225=1 的顶部、 福西 和 零位数 。First, let’s rewrite the equation like this: y 2 1 − x 2 25 = 1 . We know that the transverse axis is vertical because the y -term is first, making a = 1 and b = 5 . Therefore, the vertices are ( 0 , − 1 ) and ( 0 , 1 ) . The asymptotes are y = 1 5 x and y = − 1 5 x . Lastly, let’s find the foci using c 2 = a 2 + b 2 .
::首先,让我们重写这样的方程 : y21- x225=1. 我们知道, 横轴是垂直的, 因为 y- term 是第一个, 产生 a=1 和 b= 5。 因此, 顶端是 (0, 1) 和 (0, 1) 。 微粒是 y= 15x 和 y= 15x 。 最后, 我们使用 c2=a2+b2 来查找 foci 。c 2 = 1 + 25 = 26 c = √ 26
::c2=1+25=26c26The foci are ( 0 , − √ 26 ) and ( 0 , √ 26 ) .
::方块是(0,26)和(0,26)。Example 3
::例3Graph Example 2.
::图例2Example 4
::例4Graph 9 x 2 − 49 y 2 = 411 .
::图9x2-49y2=411。Rewrite the equation so that the right side is equal to 1. Divide everything by 441.
::重写方程式, 使右侧等于 1 。 将所有方程式除以 441 。9 x 2 441 − 49 y 2 441 = 441 441 x 2 49 − y 2 9 = 1
::9x2441-49y2441=4414441x249-y29=1a = 9 and b = 6 with a horizontal transverse axis.
::a=9和b=6,具有横向横轴。Review
::回顾Find the vertices, asymptotes, and foci of each hyperbola below.
::找到下方每个超重波的脊椎, 微粒, 和角。-
x
2
9
−
y
2
16
=
1
::x29-y216=1 -
4
y
2
−
25
x
2
=
100
::4y2-25x2=100 -
x
2
81
−
y
2
64
=
1
::x281-y264=1 -
x
2
−
y
2
=
16
::x2-y2=16 -
y
2
49
−
x
2
25
=
1
::y249 - x225=1 -
121
y
2
−
9
x
2
=
1089
::121y2-9x2=1089 -
y
2
−
x
2
=
1
::y2 - x2=1 -
x
2
64
−
y
2
4
=
1
::x264-y24=1 -
y
2
4
−
x
2
64
=
1
::y24 - x264=1 -
Graph #1.
::图1。 -
Graph #2.
::图2 -
Graph #8.
::图8 -
Graph #9.
::图9 -
Writing
Compare the hyperbolas from #8 and #9. How are they the same? How are they different? What do you know about the asymptotes and foci?
::比较8号和9号的超光球,它们如何相同?它们有什么不同?你对小行星和小行星了解多少? -
Critical Thinking
Compare the equations
x
2
25
−
y
2
9
=
1
and
x
2
25
+
y
2
9
=
1
. Graph them on the same axes and find their foci.
::比较方程式 x225-y29=1 和 x225+y29=1. 在同一轴上标出它们并找到它们的角。
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
x
2
9
−
y
2
16
=
1