章节大纲

  • Your homework assignment is to graph the 9 y 2 4 x 2 = 36 . What are the asymptotes and foci of your graph?
    ::您的作业任务是绘制 9y2 - 4x2=36 。 您的图表中什么是小数和小数 ?

    Graphing Hyperbolas
    ::超分层图

    We know that the resulting graph of a rational function is a hyperbola with two branches . A hyperbola is also a conic section. To create a hyperbola, you would slice a plane through two inverted cones, such that the plane is perpendicular to the bases of the cones.
    ::我们知道,理性函数的图解是具有两个分支的超大波拉。超大波拉也是一个二次曲线部分。要创建超大波拉,你可以通过两个反向的锥形切开一个平面,使该平面与锥形的底部垂直。

    lesson content

    By the conic definition, a hyperbola is the set of all points such that the of the differences of the distances from the foci is constant.
    ::根据二次曲线的定义,超重波是所有点的组合,因此与福子距离的差异是恒定的。

    lesson content

    Using the picture, any point, ( x , y ) on a hyperbola has the property, d 1 d 2 = P , where P is a constant.
    ::使用图片时,超高波拉上的任何点(x,y)都具有该属性,即P为常数的 d1-d2=P。

    Comparing this to the ellipse, where d 1 + d 2 = P and the equation was x 2 a 2 + y 2 b 2 = 1 or x 2 b 2 + y 2 a 2 = 1 .
    ::将此比作椭圆, d1+d2=P 和方程式为 x2a2+y2b2=1 或 x2b2+y2a2=1 。

    For a hyperbola, then, the equation will be x 2 a 2 y 2 b 2 = 1 or y 2 a 2 x 2 b 2 = 1 . Notice in the vertical orientation of a hyperbola, the y 2 term is first. Just like with an ellipse, there are two vertices , on the hyperbola. Here, they are the two points that are closest to each other on the graph. The line through the vertices and foci is called the transverse axis . Its midpoint is the center of the hyperbola. In this concept, the center will be the origin. There will always be two branches for any hyperbola and two asymptotes.
    ::对于双曲线, 方程式将是 x2a2- y2b2=1 或 y2a2- x2b2=1 。 在双曲线的垂直方向中注意, y2 术语为第一。 就像 椭圆 一样, 在 双曲线上有两个顶点。 这里, 它们是图形上两个最接近的点 。 横脊和 foci 之间的线被称为横轴 。 其中点是高曲线的中心 。 在这个概念中, 中心将是源头 。 任何超曲线总是有两个分支 , 并且有两个小孔 。

    lesson content
    lesson content

    Let's graph x 2 64 y 2 25 = 1  and then find the vertices, foci, and asymptotes.
    ::让我们绘制图 x264 -y225=1, 然后找到顶部、 foci 和 asymptotes 。

    First, this hyperbola has a horizontal transverse axis because the x 2 term is first. Also, with hyperbolas, the a and b term stay in place, but the x and y terms switch. a is not always greater than b .
    ::首先,这个超双曲线有一个横向反向轴, 因为 x2 术语是第一个 。 另外, 如果有超光子, a 和 b 术语将保持原位, 但 x 和 y 术语开关不总是大于 b 。 ais

    Therefore, a = 64 = 8 and b = 25 = 5 . To graph this hyperbola, go out 8 units to the left and right of the center and 5 units up and down to make a rectangle. The diagonals of this rectangle are the asymptotes.
    ::因此, a64=8 和 b25=5 。 要绘制此双曲线图, 请从中间的左边和右边出8个单位, 向上和向下出5个单位, 以形成矩形。 此矩形的对角是小行星 。

    Draw the hyperbola branches with the vertices on the transverse axis and the rectangle. Sketch the branches to get close to the asymptotes, but not touch them.
    ::绘制横轴和矩形上的双波形树枝。 将树枝拉伸以接近小行星, 但不触动它们 。

    The vertices are ( ± 8 , 0 ) and the asymptotes are y = ± 5 8 x (see pictures above. To find the foci, we use the Pythagorean Theorem, c 2 = a 2 + b 2 because the foci are further away from the center than the vertices.
    ::脊椎是 (8,0) , 微粒是 y58x( 见上文图片 。 要找到 foci, 我们使用 Pythagorean 理论, c2=a2+b2 , 因为 foci 离中心远比 verps 远 。

    c 2 = 64 + 25 = 89 c = 89


    ::c2=64+25=89c89

    The foci are ( ± 89 , 0 ) .
    ::焦点是(89,0)。

    Now, let's graph 36 y 2 9 x 2 = 324  and identify the foci.
    ::现在,让我们绘制36y2-9x2=324的图表, 并辨别方位。

    This equation is not in standard form. To rewrite it in standard form, the right side of the equation must be 1. Divide everything by 324.
    ::此方程式不是标准格式。 要重写标准格式, 方程式的右侧必须是 1. 将所有方程式除以324 。

    36 y 2 324 9 x 2 324 = 324 324 y 2 9 x 2 36 = 1


    ::36y2324-9x2324=324324y29-x236=1

    Now, we can see that this is a vertical hyperbola, where a = 3 and b = 6 . Draw the rectangle, asymptotes, and plot the vertices on the y -axis.
    ::现在,我们可以看到,这是一个垂直的双曲线, a=3和b=6。 绘制矩形, 星状图, 并在 Y 轴上绘制顶部 。

    To find the foci, use c 2 = a 2 + b 2 .
    ::要找到 foci, 请使用 c2=a2+b2 。

    c 2 = 36 + 9 = 45 c = 45 = 3 5


    ::c2=36+9=45c=45=35

    The foci are ( 0 , 3 5 ) and ( 0 , 3 5 ) .
    ::方块是(0,35)和(0,35)。

    Finally, let's graph x 2 4 y 2 4 = 1  and identify the asymptotes.
    ::最后,让我们用图表 x24 -y24=1 来识别小行星。

    This will be a horizontal hyperbola, because the x -term is first. a and b will both be 2 because 4 = 2 . Draw the square and diagonals to form the asymptotes.
    ::这将是一个水平双曲线, 因为 x 期是第一个。 a 和 b 将同时是 2 , 因为 '% 4= 2 。 绘制正方形和对角以形成小数 。

    The asymptotes are y = ± 2 2 x or y = x and y = x .
    ::22x 或 y=x 和 yx 是 y22x 或 y=x 和 yx 。

    Important Note: The asymptotes and square are not a part of the function. They are included in graphing a hyperbola because it makes it easier to do so.
    ::重要注意: 微粒和正方形不是函数的一部分。 它们被包含在超大波拉的图形中, 因为这样更容易做到 。

    Also, when graphing hyperbolas, we are sketching each branch. We did not make a table of values to find certain points and then connect. You can do this, but using the square or rectangle with the asymptotes produces a pretty accurate graph and is much simpler.
    ::此外,在绘制超光谱图时,我们正在绘制每个分支的图。我们没有绘制一个数值表来查找某些点,然后连接。你可以做到这一点,但使用方形或与小行星的矩形来绘制一个非常准确的图表,并且简单得多。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find  the asymptotes and foci of your graph. 
    ::早些时候,你被要求 找到您的图表的微粒和角。

    First, we need to get the equation in the form y 2 a 2 x 2 b 2 = 1 , so divide by 36.
    ::首先,我们需要以 y2a2-x2b2=1 的形式获得方程式, 所以除以 36 。

    9 y 2 4 x 2 = 36 9 y 2 36 4 x 2 36 = 36 36 y 2 4 x 2 9 = 1


    ::9y2-4x2=369y236-4x236=3636y24-x29=1

    Now we can see that a 2 = 4 and b 2 = 9 , so a = 2 and b = 3 . Also, because the y -term comes first, the hyperbola is vertically oriented. Therefore, the asymptotes are y = a b x and y = a b x .
    ::现在我们可以看到 a2=4 和 b2=9, 所以 a=2 和 b=3。 另外, 由于 Y 期先到, 双波拉是垂直方向的。 因此, 亚伯克斯和 y=abx 的微粒是 yabx 和 y=abx 。

    Substituting for a and b , we get y = 2 3 x and y = 2 3 x .
    ::替换a和b, 我们得到y23x和y=23x。

    Finally, to find the foci, use c 2 = a 2 + b 2 .
    ::最后,要找到角,请使用 c2=a2+b2。

    c 2 = 4 + 9 = 13 c = 13


    ::c2=4+9=13c=13

    The foci are ( 0 , 13 ) and ( 0 , 13 ) .
    ::焦点是(0,/13)和(0,____)。

    Example 2
    ::例2

    Find the vertices, foci, and asymptotes of y 2 x 2 25 = 1 .
    ::查找 y2 - x225=1 的顶部、 福西 和 零位数 。

    First, let’s rewrite the equation like this: y 2 1 x 2 25 = 1 . We know that the transverse axis is vertical because the y -term is first, making a = 1 and b = 5 . Therefore, the vertices are ( 0 , 1 ) and ( 0 , 1 ) . The asymptotes are y = 1 5 x and y = 1 5 x . Lastly, let’s find the foci using c 2 = a 2 + b 2 .
    ::首先,让我们重写这样的方程 : y21- x225=1. 我们知道, 横轴是垂直的, 因为 y- term 是第一个, 产生 a=1 和 b= 5。 因此, 顶端是 (0, 1) 和 (0, 1) 。 微粒是 y= 15x 和 y= 15x 。 最后, 我们使用 c2=a2+b2 来查找 foci 。

    c 2 = 1 + 25 = 26 c = 26


    ::c2=1+25=26c26

    The foci are ( 0 , 26 ) and ( 0 , 26 ) .
    ::方块是(0,26)和(0,26)。

    Example 3
    ::例3

    Graph Example 2.
    ::图例2

    lesson content

    Example 4
    ::例4

    Graph 9 x 2 49 y 2 = 411 .
    ::图9x2-49y2=411。

    Rewrite the equation so that the right side is equal to 1. Divide everything by 441.
    ::重写方程式, 使右侧等于 1 。 将所有方程式除以 441 。

    9 x 2 441 49 y 2 441 = 441 441 x 2 49 y 2 9 = 1


    ::9x2441-49y2441=4414441x249-y29=1

    a = 9 and b = 6 with a horizontal transverse axis.
    ::a=9和b=6,具有横向横轴。

    lesson content

    Review
    ::回顾

    Find the vertices, asymptotes, and foci of each hyperbola below.
    ::找到下方每个超重波的脊椎, 微粒, 和角。

    1. x 2 9 y 2 16 = 1
      ::x29-y216=1
    2. 4 y 2 25 x 2 = 100
      ::4y2-25x2=100
    3. x 2 81 y 2 64 = 1
      ::x281-y264=1
    4. x 2 y 2 = 16
      ::x2-y2=16
    5. y 2 49 x 2 25 = 1
      ::y249 - x225=1
    6. 121 y 2 9 x 2 = 1089
      ::121y2-9x2=1089
    7. y 2 x 2 = 1
      ::y2 - x2=1
    8. x 2 64 y 2 4 = 1
      ::x264-y24=1
    9. y 2 4 x 2 64 = 1
      ::y24 - x264=1
    10. Graph #1.
      ::图1。
    11. Graph #2.
      ::图2
    12. Graph #8.
      ::图8
    13. Graph #9.
      ::图9
    14. Writing Compare the hyperbolas from #8 and #9. How are they the same? How are they different? What do you know about the asymptotes and foci?
      ::比较8号和9号的超光球,它们如何相同?它们有什么不同?你对小行星和小行星了解多少?
    15. Critical Thinking Compare the equations x 2 25 y 2 9 = 1 and x 2 25 + y 2 9 = 1 . Graph them on the same axes and find their foci.
      ::比较方程式 x225-y29=1 和 x225+y29=1. 在同一轴上标出它们并找到它们的角。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。