Section outline

  • In 2013, the days a full moon appeared were in the following (with Jan. 1 being Day 1). Write a recursive formula for the sequence.
    ::2013年,满月出现的日子如下(1月1日为第1天),为序列写一个循环公式。

    9, 38, 67, 96, ...

    Source:  Moongiant
    ::资料来源:月亮。

    Recursive Rule
    ::递递递规则

    A recursive rule for a sequence is a formula which tells us how to progress from one term to the next in a sequence. Generally, the variable n is used to represent the term number. In other words, n takes on the values 1 (first term), 2 (second term), 3 (third term), etc. The variable, a n represents the n t h term and a n 1 represents the term preceding a n .
    ::序列的递归规则是一个公式,它告诉我们如何在序列中从一个术语进到下一个术语。一般而言,变量 n 用于代表术语编号。换句话说, n 代表值 1 (第一个术语)、 2 (第二个术语)、 3 (第三个术语)等。变量、 a 表示 n 术语, an- 1 表示前一个术语。

    Example sequence: 4 , 7 , 11 , 16 , , a n 1 , a n
    ::实例序列:4,7,11,16...,an-1,an

    In the above sequence, a 1 = 4 , a 2 = 7 , a 3 = 11 and a 4 = 16 .
    ::在上述序列中, a1=4, a2=7, a3=11, a4=16。

    Let's describe the pattern and write a recursive rule for the sequence: 9 , 11 , 13 , 15 ,
    ::让我们描述一下这个模式 并写出一个序列的循环规则 911,13,15...

    First we need to determine what the pattern is in the sequence. If we subtract each term from the one following it, we see that there is a common difference of 29. We can therefore use a n 1 and a n to write a recursive rule as follows: a n = a n 1 + 29
    ::首先,我们需要确定序列中的模式。 如果我们从后面的顺序中减去每个术语, 我们就会发现有一个共同的29个差异, 因此我们可以使用 an-1 和 an- 1 和 a 来写一个循环规则如下: a= an- 1+ 29

    Now, let's write a recursive rule for the following sequences.
    ::现在,让我们为以下的顺序 写一个循环规则。

    1. 3 , 9 , 27 , 81 ,

    In this sequence, each term is multiplied by 3 to get the next term. We can write a recursive rule: a n = 3 a n 1
    ::在此序列中, 每个术语乘以 3 以获得下一个术语 。 我们可以写入一个循环规则 : a= 3an - 1

    1. 1 , 1 , 2 , 3 , 5 , 8 ,

    This is a special sequence called the Fibonacci sequence. In this sequence each term is the sum of the previous two terms. We can write the recursive rule for this sequence as follows: a n = a n 2 + a n 1 .
    ::这是一个叫做 Fibonacci 序列的特殊序列。 在这个序列中, 每个词都是前两个词的总和 。 我们可以为这个序列写入递归规则如下: a=an-2+an-1 。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to write a recursive formula for the sequence 9, 38, 67, 96, ...
    ::早些时候,你被要求写一个序列9,38,67,96的循环公式...

    First we need to determine what pattern the sequence is following. If we subtract each term from the one following it, we find that there is a common difference of 29. We can therefore use a n 1 and a n to write a recursive rule as follows: a n = a n 1 + 29
    ::首先,我们需要确定顺序遵循的模式。如果我们从后面的顺序中减去每个术语,我们就会发现有一个29个共同的区别。 因此,我们可以使用 an-1 和 a 来写一个循环规则如下: a= an-1+29

    Write the recursive rules for the following sequences.
    ::写入以下序列的递归规则。

    Example 2
    ::例2

    1 , 2 , 4 , 8 ,

    In this sequence each term is double the previous term so the recursive rule is: a n = 2 a n 1
    ::在这个顺序中,每个术语是前一术语的两倍,因此,递归规则是:a=2an-1。

    Example 3
    ::例3

    1 , 2 , 5 , 8 ,

    This time three is subtracted each time to get the next term: a n = a n 1 3 .
    ::这一次每次减3次以获得下一学期:a=an-1-3。

    Example 4
    ::例4

    1 , 2 , 4 , 7 ,

    This one is a little trickier to express. Try looking at each term as shown below:
    ::这是一个比较狡猾的表达方式。 尝试看看下面的每个词 :

    a 1 = 1 a 2 = a 1 + 1 a 3 = a 2 + 2 a 4 = a 3 + 3     a n = a n 1 + ( n 1 )

    ::a1=1a2=a1+1a3=a2+2a4=a3+3 *an=an-1+(n-1)

    Review
    ::回顾

    Describe the pattern and write a recursive rule for the following sequences.
    ::描述图案并写入以下序列的递归规则。

    1. 1 4 , 1 2 , 1 , 2
    2. 5 , 11 , 17 , 23 ,
    3. 33 , 28 , 23 , 18 ,
    4. 1 , 4 , 16 , 64 ,
    5. 21 , 30 , 39 , 48 ,
    6. 100 , 75 , 50 , 25 ,
    7. 243 , 162 , 108 , 72 ,
    8. 128 , 96 , 72 , 54 ,
    9. 1 , 5 , 10 , 16 , 23 ,
    10. 0 , 2 , 2 , 4 , 6 ,
    11. 3 , 5 , 8 , 12 ,
    12. 0 , 2 , 6 , 12 ,
    13. 4 , 9 , 14 , 19 ,
    14. 1 2 , 2 3 , 3 4 , 4 5
    15. 4 , 5 , 9 , 14 , 23 ,

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。