Section outline

  • Halley's Comet appears in the sky approximately every 76 years. The comet was first spotted in the year 1531. Find the n t h term rule and the 10 t h term for the represented by this situation.
    ::Halley的彗星大约每隔76年在天空中出现一次。 彗星是1531年首次发现的。 找到以这种情形为代表的星号的第n期规则和第10期规则 。

    Arithmetic Sequence
    ::亚学序列

    In this concept we will begin looking at a specific type of sequence called an arithmetic sequence . In an arithmetic sequence the difference between any two consecutive terms is constant. This constant difference is called the common difference . We can generalize the equation for an arithmetic sequence below:
    ::在此概念中, 我们将开始查看一种特定类型的序列, 称为算术序列。 在算术序列中, 任何两个连续任期之间的差是不变的。 这个不变的差称为共同差 。 我们可以在下面的算术序列中将方程式概括为 :

    a n a n 1 = d , where a n 1 and a n represent two consecutive terms and d represents the common difference.
    ::a-an-1=d,其中an-1代表连续两届,d代表共同差额。

    Since the same value, the common difference, d , is added to get each successive term in an arithmetic sequence we can determine the value of any term from the first term and how many time we need to add d to get to the desired term as illustrated below:
    ::由于同值,加上了共同差数(d),以便每个连续学期都按算术顺序计算,我们可以确定从第一个学期起任何学期的价值,以及我们需要多少时间来增加 d ,以便达到下列预期学期:

    Given the sequence: 22 , 19 , 16 , 13 , in which a 1 = 22 and d = 3
    ::根据顺序: 22,19,16,13... 其中a1=22和d3

    a 1 = 22   o r   22 + ( 1 1 ) ( 3 ) = 22 + 0 = 22 a 2 = 19   o r   22 + ( 2 1 ) ( 3 ) = 22 + ( 3 ) = 19 a 3 = 16   o r   22 + ( 3 1 ) ( 3 ) = 22 + ( 6 ) = 16 a 4 = 13   o r   22 + ( 4 1 ) ( 3 ) = 22 + ( 9 ) = 13 a n = 22 + ( n 1 ) ( 3 ) a n = 22 3 n + 3 a n = 3 n + 25

    ::a1=22或22+(1-1)(-3)=22+0=22a2=19或22+(2-1)(3)=22+(3)=22+(3)=19a3=16或22+(3-1)(3)=22+(6)=16a4=13或22+(4-1)(3)=22+(9)(9)=13an=22+(n-1)(3)an=22-3n+3n+3an_3n+3n+3n+25

    Now we can generalize this into a rule for the n t h term of any arithmetic sequence:
    ::现在我们可以把它概括为 任何算术序列的第 n 术语的规则:

    a n = a 1 + ( n 1 ) d

    ::a=a1+(n-1)d

    Let's find the common difference and n t h term rule for the arithmetic sequence: 2 , 5 , 8 , 11
    ::让我们找出算术序列的 共同的差别和nth术语规则: 2,5,8,11...

    To find the common difference we subtract consecutive terms.
    ::为了找到共同的差别,我们连续减一减。

    5 2 = 3 8 5 = 3   , thus the common difference is   3. 11 8 = 3

    ::5-2=38-5=3,因此共同差为3.11-8=3

    Now we can put our first term and common difference into the n t h term rule discovered above and simplify the expression.
    ::现在我们可以把我们的第一个任期和共同的区别 放在上面发现的第n个任期规则中 并简化表达方式

    a n = 2 + ( n 1 ) ( 3 ) = 2 + 3 n 3 , so   a n = 3 n 1. = 3 n 1

    ::an=2+(n-1)(3)=2+3n-3,所以 an=3n-1.=3n-1

    Now, let's find the n t h term rule and thus the 100 t h term for the arithmetic sequence in which a 1 = 9 and d = 2 .
    ::现在,让我们来看看 nth 术语规则, 以及计算序列的第 100 个术语, 其中 a1\\\ 9 和 d= 2 。

    We have what we need to plug into the rule:
    ::我们有我们需要的 插入规则:

    a n = 9 + ( n 1 ) ( 2 ) = 9 + 2 n 2 , thus the   n t h   term rule is   a n = 2 n 11. = 2 n 11

    ::an9+(n- 1)(2)9+2n-2n-2,因此 nth 术语规则是 an=2n- 11.=2n- 11

    Now to find the 100 t h term we can use our rule and replace n with 100: a 100 = 2 ( 100 ) 11 = 200 11 = 189 .
    ::现在找到第100个术语,我们可以使用我们的规则,用100:a=2(100)-11=200-11=189取代n。

    Finally, let's find the n t h term rule and thus the 100 t h term for the arithmetic sequence in which a 3 = 8 and d = 7 .
    ::最后,让我们找到 nth 术语规则, 以及计算序列的第100个术语, 其中 a3=8 和 d=7 。

    This one is a little less straightforward as we will have to first determine the first term from the term we are given. To do this, we will replace a n with a 3 = 8 and use 3 for n in the formula to determine the unknown first term as shown:
    ::这一点不太直截了当,因为我们首先必须确定从我们被赋予的这一任期开始的第一个任期。 为此,我们将用A3=8取代A3=8,并在公式中用n3代替n,以确定未知的第一个任期,如下所示:

    a 1 + ( 3 1 ) ( 7 ) = 8 a 1 + 2 ( 7 ) = 8 a 1 + 14 = 8 a 1 = 6

    ::a1+(3-1)(7)=8a1+2(7)=8a1+14=8a1+6

    Now that we have the first term and the common difference we can follow the same process used in the previous example to complete the problem.
    ::现在我们有了第一个术语和共同的区别,我们可以遵循上一个例子中用来解决问题的同样进程。

    a n = 6 + ( n 1 ) ( 7 ) = 6 + 7 n 7 , thus   a n = 7 n 13. = 7 n 13

    ::an6+(n- 1)(7) 6+7n-7n-7thus an=7n- 13.=7n-13

    Now we can find the 100 t h term: a 100 = 7 ( 100 ) 13 = 687 .
    ::现在我们可以找到第100个术语:a100=7(100)-13=687。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find the  n t h  term rule and the  10 t h term for the sequence represented by Halley's Comet, which appears in the sky once approximately every 76 years and first appeared in 1531.
    ::早些时候,有人要求你为Halley的彗星代表的序列 找到 nth 术语规则和 第十个术语规则, 它大约每隔76年出现在天空一次, 第一次出现在1531年。

    From the information given, we can conclude that a 1 = 1531 and d = 76 .
    ::根据所提供的资料,我们可以得出a1=1531和d=76的结论。

    We now have what we need to plug into the rule:
    ::我们现在有我们需要的 插入规则:

    a n = 1531 + ( n 1 ) ( 76 ) = 1531 + 76 n 76 , thus the   n t h   term rule is   a n = 76 n + 1455

    ::an=1531+(n-1)(76)=1531+76n-76,nth 术语规则为 an=76n+1455

    Now to find the 10 t h term we can use our rule and replace n with 10: a 10 = 76 ( 10 ) + 1455 = 760 + 1455 = 2215 .
    ::现在找到第10个术语, 我们可以使用我们的规则, 用 10: a10=76(10)+1455=760+1455=2215来替换 n。

    Example 2
    ::例2

    Find the common difference and the n t h term rule for the sequence: 5 , 3 , 11 ,
    ::找出共同的区别 和Nth术语规则的顺序: 5 -3, -11,...

    The common difference is 3 5 = 8 . Now a n = 5 + ( n 1 ) ( 8 ) = 5 8 n + 8 = 8 n + 13 .
    ::共同的差别是-3-58. 现在一个=5+(n-1)(-8)=5-8n+8+88n+13。

    Example 3
    ::例3

    Write the n t h term rule and find the 45 t h term for the arithmetic sequence with a 10 = 1 and d = 6 .
    ::以 a10=1 和 d6 来写入 nth 术语规则, 并找到算术序列的第 45 个术语 。

    To find the first term:
    ::为了找到第一个学期:

    a 1 + ( 10 1 ) ( 6 ) = 1 a 1 54 = 1 a 1 = 55

    ::a1+(10-1)(-6)=1a1-54=1a1=1a1=55

    Find the n t h term rule: a n = 55 + ( n 1 ) ( 6 ) = 55 6 n + 6 = 6 n + 61 .
    ::查找 nth 术语规则: an=55+(n- 1)(-6)=55- 6n+66n+61。

    Finally, the 45 t h term: a 45 = 6 ( 45 ) + 61 = 209 .
    ::最后,第45届:a456(45)+61209。

    Example 4
    ::例4

    Find the 62 n d term for the arithmetic sequence with a 1 = 7 and d = 3 2 .
    ::以 a1++7 和 d=32 查找算术序列的第62 术语。

    This time we will not simplify the n t h term rule, we will just use the formula to find the 62 r d term: a 62 = 7 + ( 62 1 ) ( 3 2 ) = 7 + 61 ( 3 2 ) = 14 2 + 183 2 = 169 2 .
    ::这一次我们不会简化Nth术语规则, 我们只会使用公式来找到第62个术语: a627+(62-1)(32)+7+61(32)142+1832=1692。

    Review
    ::回顾

    Identify which of the following sequences is arithmetic. If the sequence is arithmetic find the n t h term rule.
    ::标明以下哪个序列是算术。 如果序列是算术, 则查找 nth 术语规则 。

    1. 2 , 3 , 4 , 5 ,
    2. 6 , 2 , 1 , 3 ,
    3. 5 , 0 , 5 , 10 ,
    4. 1 , 2 , 4 , 8 ,
    5. 0 , 3 , 6 , 9 ,
    6. 13 , 12 , 11 , 10 ,
    7. 4 , 3 , 2 , 1 ,
    8. a , a + 2 , a + 4 , a + 6 ,
      ::a, a+2, a+4, a+6,...

    Write the n t h term rule for each arithmetic sequence with the given term and common difference.
    ::以给定的术语和常见差数为每个算术序列写入 nth 术语规则 。

    1. a 1 = 15 and d = 8
      ::a1=15和d8
    2. a 1 = 10 and d = 1 2
      ::a110和d=12
    3. a 3 = 24 and d = 2
      ::a3=24和d2
    4. a 5 = 3 and d = 3
      ::a53和d=3
    5. a 10 = 15 and d = 11
      ::a1015和d11
    6. a 7 = 32 and d = 7
      ::a7=32和d=7
    7. a n 2 = 3 n + 2 , find a n
      ::an-2=3n+2, 找到 a

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。