Section outline

  • You are saving for summer camp. You deposit $100 on the first of each month into your savings account. The account grows at a rate of 0.5% per month. How much money is in your account on the first day on the 9 t h month?
    ::您正在为夏令营储蓄。 您每月头一个月将100美元存入您的储蓄账户。 该账户以每月0.5%的速率增长。 您在9个月第一天的账户里存了多少钱 ?

    Sum of Finite Geometric Series
    ::有限几何系列总和

    We have discussed how to use the calculator to find the sum of any series provided we know the n t h term rule. For a geometric series, however, there is a specific rule that can be used to find the sum algebraically. Let’s look at a finite geometric and derive this rule.
    ::我们已经讨论过如何使用计算器来找到任何序列的总和,只要我们知道 nth 术语规则。 但是,对于几何序列来说,有一条具体规则可以用来找到总代数。 让我们看看一个有限的几何方法并得出这一规则。

    Given a n = a 1 r n 1 .
    ::给定 an= a1rn- 1 。

    The sum of the first n terms of a geometric sequence is: S n = a 1 + a 1 r + a 1 r 2 + a 1 r 3 + + a 1 r n 2 + a 1 r n 1 .
    ::几何序列的第一个 n 条件总和是: Sn=a1+a1r+a1r2+a1r3+...+a1rn-2+a1rn-1。

    Now, factor out a 1 to get a 1 ( 1 + r 2 + r 3 + + r n 2 + r n 1 ) . If we isolate what is in the parenthesis and multiply this sum by ( 1 r ) as shown below we can simplify the sum:
    ::现在, 乘以 a1 以获得 a1 (1+r2+r3+...+rn- 2+rn- 1) 。 如果我们将括号中的内容分隔开来, 并将这个总和乘以下文所示的( 1-r) , 就可以简化总和 :

    ( 1 r ) S n = ( 1 r ) ( 1 + r + r 2 + r 3 + + r n 2 + r n 1 ) = ( 1 + r + r 2 + r 3 + + r n 2 + r n 1 r r 2 r 3 r 4 r n 1 r n ) = ( 1 + r + r 2 + r 3 + + r n 2 + r n 1 r r 2 r 3 r 4 r n 1 r n ) = ( 1 r ) n

    :sad1-r)Sn=(1+r+r+r2+r3+...+rn2+rn1)=(1+r+r+r2+r3+...+...+r2+r2+r3+r3+r4-rn_r2_r2-r3-r4-...-rn-rn_r3+...+r_r2+r2+r_r2+r_r3_r4_r4__...-rn_1_rn)=(1+r+r+r+r2+r2+r2+r3+r3+r3+..._r_r3_r4__...-rn)=(1-rn)n

    By multiplying the sum by 1 r we were able to cancel out all of the middle terms. However, we have changed the sum by a factor of 1 r , so what we really need to do is multiply our sum by 1 r 1 r , or 1.
    ::通过将总和乘以1-r,我们得以取消所有中间条件。然而,我们已经将总和换成1-r,所以我们真正需要做的是将总和乘以1-r1或1。

    a 1 ( 1 + r 2 + r 3 + + r n 2 + r n 1 ) 1 r 1 r = a 1 ( 1 r n ) 1 r , which is the sum of a finite geometric series.
    ::a1(1+r2+r3+...+rn-2+rn-1)1-r1-r=a1(1-rn)1-r,是一定几何序列的总和。

    So, S n = a 1 ( 1 r n ) 1 r .
    ::那么,Sn=a1(1-rn)1-r

    Let's find the sum of the first ten terms of the geometric sequence a n = 1 32 ( 2 ) n 1 . This could also be written as, “Let's find n = 1 10 1 32 ( 2 ) n 1 .”
    ::让我们找到几何序列 an=132(- 2)n-1的前十个条件的总和。 这也可以写为, “让我们找到n=110132(- 2)n-1 ” 。

    Using the formula, a 1 = 1 32 , r = 2 , and n = 10 .
    ::使用公式, a1=132, r2, n=10。

    S 10 = 1 32 ( 1 ( 2 ) 10 ) 1 ( 2 ) = 1 32 ( 1 1024 ) 3 = 341 32

    ::S10=132(1-2)1010-1-2)1-2=132(1-1024)334132

    We can also use the calculator as shown below.
    ::我们还可以使用下文所示的计算器。

    s u m ( s e q ( 1 / 32 ( 2 ) x 1 , x , 1 , 10 ) ) = 341 32

    :sadseq(1/32(-2)x-1,x,1,10)34132

    Now, let's find the first term and the n t h term rule for a geometric series in which the sum of the first 5 terms is 242 and the common ratio is 3.
    ::现在,让我们来为几何序列找到第一个学期和第n学期规则, 在其中,前五个学期的总和是242, 共同比率是3。

    Plug in what we know to the formula for the sum and solve for the first term:
    ::插入我们知道的金额公式 并解决第一个任期:

    242 = a 1 ( 1 3 5 ) 1 3 242 = a 1 ( 242 ) 2 242 = 121 a 1 a 1 = 2

    ::242=a1(1-35)1-3242=a1(-242)-2242=121a1a1=2

    The first term is 2 and a n = 2 ( 3 ) n 1 .
    ::第一个任期为2年,一个=2(3)n-1。

    Finally, let's solve the following problem.
    ::最后,让我们解决以下问题。

    Charlie deposits $1000 on the first of each year into his investment account. The account grows at a rate of 8% per year. How much money is in the account on the first day on the 11 t h year.
    ::Charlie每年第一年将1000美元存入投资账户。该账户以每年8%的速度增长。第11年的第一天,账户里有多少钱。

    First, consider what is happening here on the first day of each year. On the first day of the first year, $1000 is deposited. On the first day of the second year $1000 is deposited and the previously deposited $1000 earns 8% interest or grows by a factor of 1.08 (108%). On the first day of the third year another $1000 is deposited, the previous year’s deposit earns 8% interest and the original deposit earns 8% interest for two years (we multiply by 1.08 2 ):
    ::首先,考虑每年第一天这里发生的情况。第一年的第一天,1 000美元被存入。第二年的第一天,1 000美元被存入,以前存入的1 000美元获得8%的利息或增长系数为1.08(108 % ) 。 第三年的第一天,再存入1 000美元,上一年的存款获得8%的利息,原始存款在两年中赚取8%的利息(我们乘以1.082 ):

    Sum Year   1 : 1000 Sum Year   2 : 1000 + 1000 ( 1.08 ) Sum Year   3 : 1000 + 1000 ( 1.08 ) + 1000 ( 1.08 ) 2 Sum Year   4 : 1000 + 1000 ( 1.08 ) + 1000 ( 1.08 ) 2 + 1000 ( 1.08 ) 3 Sum Year   11 : 1000 + 1000 ( 1.08 ) + 1000 ( 1.08 ) 2 + 1000 ( 1.08 ) 3 + + 1000 ( 1.08 ) 9 + 1000 ( 1.08 ) 10

    ::11000-000+1000-000(1.08)+1000-000(1.083+...+1000-000(1.08)+1000-20000(1.08)+1000(1.08)+1000(1.08)+1000(1.082+1000)+1000(1.083)+(%0)+Sum 11:1000+1000(1.08)+1000(1.08)+1000(1.082)+1000(1.082)+1000(1.083+...+1000(1.08)+1000(1.089)+1000(1.08)10

    There are 11 terms in this series because on the first day of the 11 t h year we make our final deposit and the original deposit earns interest for 10 years.
    ::* 本系列有11个条件,因为在11年的第一天,我们最后存款和原始存款赚取利息达10年之久。

    This series is geometric. The first term is 1000, the common ratio is 1.08 and n = 11 . Now we can calculate the sum using the formula and determine the value of the investment account at the start of the 11 t h year.
    ::这是几何序列。 第一个学期是1000, 共同比率是1.08 和 n=11。 现在我们可以使用公式来计算总和, 并在第十一年开始时确定投资账户的价值 。

    s 11 = 1000 ( 1 1.08 11 ) 1 1.08 = 16645.48746 $ 16 , 645.49

    ::11=1000(1-0811-1)1-1.08=16645.48746 $16 645.49

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find how much  money is in your account on the first day of the  9 t h  month. 
    ::早些时候,你被要求去查一下 9月9日的第一天 你账户里有多少钱

    There are 9 terms in this series because on the first day of the 9 t h month you make your final deposit and the original deposit earns interest for 8 months.
    ::这个系列有9个条件 因为9月的第一天 你缴纳了最后的存款 原始的存款在8个月里赚取利息

    This series is geometric. The first term is 100, the common ratio is 1.005 and n = 9 . Now we can calculate the sum using the formula and determine the value of the investment account at the start of the 9 t h month.
    ::这是几何序列。 第一个学期是100, 共同比率是1.005和n=9。 现在我们可以使用公式计算总和, 并在9月初确定投资账户的价值 。

    s 9 = 100 ( 1 1.005 9 ) 1 1.005 = 918.22

    ::s9=100(1-1.00591-11.005=918.22)

    Therefore there is $918.22 in the account at the beginning of the ninth month.
    ::因此,在第九个月初,账户中有918.22美元。

    Example 2
    ::例2

    Evaluate n = 3 8 2 ( 3 ) n 1 .
    ::评价n=382(-3)n-1。

    Since we are asked to find the sum of the 3 r d through 8 t h terms, we will consider a 3 as the first term. The third term is a 3 = 2 ( 3 ) 2 = 2 ( 9 ) = 18 . Since we are starting with term three, we will be summing 6 terms, a 3 + a 4 + a 5 + a 6 + a 7 + a 8 , in total. We can use the rule for the sum of a geometric series now with a 1 = 18 , r = 3 and n = 6 to find the sum:
    ::由于我们被要求找到第三至第八学期的总和,我们将考虑将a3作为第一个学期。第三个学期为a3=2(-3)2=2(9)=18。由于我们从第三学期开始,我们将共学6个学期,a3+a4+a5+a6+a7+a8。我们可以使用这一规则来计算目前为a1=18、r3和n=6的几何序列的总和:

    n = 3 8 2 ( 3 ) n 1 = 18 ( 1 ( 3 ) 6 ) 1 ( 3 ) = 3276

    ::n=382(-3)(-3)n-1=18(1-(-3)6)1-(-3)-(-3)_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    Example 3
    ::例3

    If the sum of the first seven terms in a geometric series is 215 8 and r = 1 2 , find the first term and the n t h term rule.
    ::如果几何序列中前七个术语的总和是2158和r12,则找到第一个术语和nth术语规则。

    We can substitute what we know into the formula for the sum of a geometric series and solve for a 1 .
    ::我们可以用我们所知道的 来代替公式 和几何序列的总和 然后解决A1

    215 8 = a 1 ( 1 ( 1 2 ) 7 ) 1 ( 1 2 ) 215 8 = a 1 ( 43 64 ) a 1 = ( 64 43 ) ( 215 8 ) = 40

    ::2158=a1(1-(-)127)1-(-)12-2158=a1(-4364)a1=(6443)(2158)=40

    The n t h term rule is a n = 40 ( 1 2 ) n 1
    ::nth 术语规则为 an=40(- 12- 12n- 1)

    Example 4
    ::例4

    Sam deposits $50 on the first of each month into an account which earns 0.5% interest each month. To the nearest dollar, how much is in the account right after Sam makes his last deposit on the first day of the fifth year (the 49 t h month).
    ::Sam每月头一个月将50美元存入每个月赚取0.5 % 利息的账户。 至最近的美元,在Sam在第五年(第49个月)的第一天(即第49个月)最后一次存款之后,在账户中存了多少钱。

    The deposits that Sam make and the interest earned on each deposit generate a geometric series,
    ::Sam的存款和每笔存款的利息 产生几何序列

    S 49 = 50 + 50 ( 1.005 ) 1 + 50 ( 1.005 ) 2 + 50 ( 1.005 ) 3 + + 50 ( 1.005 ) 47 + 50 ( 1.005 ) 48 ,     last deposit first deposit

    ::S49=50+50(1.0051)1+50(1.0052)2+50(1.0053+...)+50(1.005)47+50(1.005)48, 最后一次交存第一交存

    Note that the first deposit earns interest for 48 months and the final deposit does not earn any interest. Now we can find the sum using a 1 = 50 , r = 1.005 and n = 49 .
    ::请注意,第一笔存款可赚取48个月的利息,而最后一笔存款不赚取任何利息。 现在我们可以用a1=50、r=1.005和n=49来找到这笔金额。

    S 49 = 50 ( 1 ( 1.005 ) 49 ) ( 1 1.005 ) $ 2768

    ::S49=50(1至(1.005)49(1至1.005)________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    Review
    ::回顾

    Use the formula for the sum of a geometric series to find the sum of the first five terms in each series.
    ::使用几何序列总和的公式,在每个序列中找到前五个术语的总和。

    1. a n = 36 ( 2 3 ) n 1
      ::an=36( 23n- 1)
    2. a n = 9 ( 2 ) n 1
      ::an=9(--2)n- 1
    3. a n = 5 ( 1 ) n 1
      ::an=5 (- 1) n- 1
    4. a n = 8 25 ( 5 2 ) n 1
      ::an=825(52)n-1
    5. a n = 2 3 ( 3 4 ) n 1
      ::an=23(- 34n- 1)

    Find the indicated sums using the formula and then check your answers with the calculator.
    ::使用公式查找指定金额,然后用计算器检查答案。

    1. n = 1 4 ( 1 ) ( 1 2 ) n 1
      ::Nn=14(-1)(12)(1)(12)n-1
    2. n = 2 8 ( 128 ) ( 1 4 ) n 1
      ::=28(128)(14)(14)n-1
    3. n = 2 7 125 64 ( 4 5 ) n 1
      ::=2712564(45-1)
    4. n = 5 11 1 32 ( 2 ) n 1
      ::=511132(-2-2)n-1

    Given the sum and the common ratio, find the n t h term rule for the series.
    ::考虑到总和和共同比率,请找到该系列的第n期规则。

    1. n = 1 6 a n = 63 and r = 2
      ::=16an\\\\63和r2
    2. n = 1 4 a n = 671 and r = 5 6
      ::n=14an=671和r=56
    3. n = 1 5 a n = 122 and r = 3
      ::=1500=122和r3
    4. n = 2 7 a n = 63 2 and r = 1 2
      ::=27 =632 和 r =12

    Solve the following word problems using the formula for the sum of a geometric series.
    ::使用几何序列之和的公式解决下列字问题。

    1. Sapna’s grandparents deposit $1200 into a college savings account on her 5 t h birthday. They continue to make this birthday deposit each year until making the final deposit on her 18 t h birthday. If the account earns 5% interest annually, how much is there after the final deposit?
      ::萨普拉的祖父母在她五岁生日时将1200美元存入大学储蓄账户。 他们每年继续将这一生日存款存入大学储蓄账户,直到她18岁生日最后存款。 如果该账户每年赚取5 % 的利息,那么在最后存款之后会有多少?
    2. Jeremy wants to have save $10,000 in five years. If he makes annual deposits on the first of each year and the account earns 4.5% interest annually, how much should he deposit each year in order to have $10,000 in the account after the final deposit on the first of the 6 t h year. Round your answer to the nearest $100.
      ::Jeremy想在五年内节省10 000美元。如果他每年在第一年存款,账户每年赚取4.5 % 的利息,那么他每年应该存入多少,才能在第六年第一年最后存款之后在账户中存10 000美元。请将您对最近100美元的答复四舍五入。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。