11.10 查找有限几何系列总和
Section outline
-
You are saving for summer camp. You deposit $100 on the first of each month into your savings account. The account grows at a rate of 0.5% per month. How much money is in your account on the first day on the month?
::您正在为夏令营储蓄。 您每月头一个月将100美元存入您的储蓄账户。 该账户以每月0.5%的速率增长。 您在9个月第一天的账户里存了多少钱 ?Sum of Finite Geometric Series
::有限几何系列总和We have discussed how to use the calculator to find the sum of any series provided we know the term rule. For a geometric series, however, there is a specific rule that can be used to find the sum algebraically. Let’s look at a finite geometric and derive this rule.
::我们已经讨论过如何使用计算器来找到任何序列的总和,只要我们知道 nth 术语规则。 但是,对于几何序列来说,有一条具体规则可以用来找到总代数。 让我们看看一个有限的几何方法并得出这一规则。Given .
::给定 an= a1rn- 1 。The sum of the first terms of a geometric sequence is: .
::几何序列的第一个 n 条件总和是: Sn=a1+a1r+a1r2+a1r3+...+a1rn-2+a1rn-1。Now, factor out to get . If we isolate what is in the parenthesis and multiply this sum by as shown below we can simplify the sum:
::现在, 乘以 a1 以获得 a1 (1+r2+r3+...+rn- 2+rn- 1) 。 如果我们将括号中的内容分隔开来, 并将这个总和乘以下文所示的( 1-r) , 就可以简化总和 :
:1-r)Sn=(1+r+r+r2+r3+...+rn2+rn1)=(1+r+r+r2+r3+...+...+r2+r2+r3+r3+r4-rn_r2_r2-r3-r4-...-rn-rn_r3+...+r_r2+r2+r_r2+r_r3_r4_r4__...-rn_1_rn)=(1+r+r+r+r2+r2+r2+r3+r3+r3+..._r_r3_r4__...-rn)=(1-rn)n
By multiplying the sum by we were able to cancel out all of the middle terms. However, we have changed the sum by a factor of , so what we really need to do is multiply our sum by , or 1.
::通过将总和乘以1-r,我们得以取消所有中间条件。然而,我们已经将总和换成1-r,所以我们真正需要做的是将总和乘以1-r1或1。, which is the sum of a finite geometric series.
::a1(1+r2+r3+...+rn-2+rn-1)1-r1-r=a1(1-rn)1-r,是一定几何序列的总和。So, .
::那么,Sn=a1(1-rn)1-rLet's find the sum of the first ten terms of the geometric sequence . This could also be written as, “Let's find .”
::让我们找到几何序列 an=132(- 2)n-1的前十个条件的总和。 这也可以写为, “让我们找到n=110132(- 2)n-1 ” 。Using the formula, , , and .
::使用公式, a1=132, r2, n=10。
::S10=132(1-2)1010-1-2)1-2=132(1-1024)334132We can also use the calculator as shown below.
::我们还可以使用下文所示的计算器。
:seq(1/32(-2)x-1,x,1,10)34132
Now, let's find the first term and the term rule for a geometric series in which the sum of the first 5 terms is 242 and the common ratio is 3.
::现在,让我们来为几何序列找到第一个学期和第n学期规则, 在其中,前五个学期的总和是242, 共同比率是3。Plug in what we know to the formula for the sum and solve for the first term:
::插入我们知道的金额公式 并解决第一个任期:
::242=a1(1-35)1-3242=a1(-242)-2242=121a1a1=2The first term is 2 and .
::第一个任期为2年,一个=2(3)n-1。Finally, let's solve the following problem.
::最后,让我们解决以下问题。Charlie deposits $1000 on the first of each year into his investment account. The account grows at a rate of 8% per year. How much money is in the account on the first day on the year.
::Charlie每年第一年将1000美元存入投资账户。该账户以每年8%的速度增长。第11年的第一天,账户里有多少钱。First, consider what is happening here on the first day of each year. On the first day of the first year, $1000 is deposited. On the first day of the second year $1000 is deposited and the previously deposited $1000 earns 8% interest or grows by a factor of 1.08 (108%). On the first day of the third year another $1000 is deposited, the previous year’s deposit earns 8% interest and the original deposit earns 8% interest for two years (we multiply by ):
::首先,考虑每年第一天这里发生的情况。第一年的第一天,1 000美元被存入。第二年的第一天,1 000美元被存入,以前存入的1 000美元获得8%的利息或增长系数为1.08(108 % ) 。 第三年的第一天,再存入1 000美元,上一年的存款获得8%的利息,原始存款在两年中赚取8%的利息(我们乘以1.082 ):
::11000-000+1000-000(1.08)+1000-000(1.083+...+1000-000(1.08)+1000-20000(1.08)+1000(1.08)+1000(1.08)+1000(1.082+1000)+1000(1.083)+(%0)+Sum 11:1000+1000(1.08)+1000(1.08)+1000(1.082)+1000(1.082)+1000(1.083+...+1000(1.08)+1000(1.089)+1000(1.08)10There are 11 terms in this series because on the first day of the year we make our final deposit and the original deposit earns interest for 10 years.
::* 本系列有11个条件,因为在11年的第一天,我们最后存款和原始存款赚取利息达10年之久。This series is geometric. The first term is 1000, the common ratio is 1.08 and . Now we can calculate the sum using the formula and determine the value of the investment account at the start of the year.
::这是几何序列。 第一个学期是1000, 共同比率是1.08 和 n=11。 现在我们可以使用公式来计算总和, 并在第十一年开始时确定投资账户的价值 。
::11=1000(1-0811-1)1-1.08=16645.48746 $16 645.49Examples
::实例Example 1
::例1Earlier, you were asked to find how much money is in your account on the first day of the month.
::早些时候,你被要求去查一下 9月9日的第一天 你账户里有多少钱There are 9 terms in this series because on the first day of the month you make your final deposit and the original deposit earns interest for 8 months.
::这个系列有9个条件 因为9月的第一天 你缴纳了最后的存款 原始的存款在8个月里赚取利息This series is geometric. The first term is 100, the common ratio is 1.005 and . Now we can calculate the sum using the formula and determine the value of the investment account at the start of the month.
::这是几何序列。 第一个学期是100, 共同比率是1.005和n=9。 现在我们可以使用公式计算总和, 并在9月初确定投资账户的价值 。
::s9=100(1-1.00591-11.005=918.22)Therefore there is $918.22 in the account at the beginning of the ninth month.
::因此,在第九个月初,账户中有918.22美元。Example 2
::例2Evaluate .
::评价n=382(-3)n-1。Since we are asked to find the sum of the through terms, we will consider as the first term. The third term is . Since we are starting with term three, we will be summing 6 terms, , in total. We can use the rule for the sum of a geometric series now with , and to find the sum:
::由于我们被要求找到第三至第八学期的总和,我们将考虑将a3作为第一个学期。第三个学期为a3=2(-3)2=2(9)=18。由于我们从第三学期开始,我们将共学6个学期,a3+a4+a5+a6+a7+a8。我们可以使用这一规则来计算目前为a1=18、r3和n=6的几何序列的总和:
::n=382(-3)(-3)n-1=18(1-(-3)6)1-(-3)-(-3)_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________Example 3
::例3If the sum of the first seven terms in a geometric series is and , find the first term and the term rule.
::如果几何序列中前七个术语的总和是2158和r12,则找到第一个术语和nth术语规则。We can substitute what we know into the formula for the sum of a geometric series and solve for .
::我们可以用我们所知道的 来代替公式 和几何序列的总和 然后解决A1
::2158=a1(1-(-)127)1-(-)12-2158=a1(-4364)a1=(6443)(2158)=40The term rule is
::nth 术语规则为 an=40(- 12- 12n- 1)Example 4
::例4Sam deposits $50 on the first of each month into an account which earns 0.5% interest each month. To the nearest dollar, how much is in the account right after Sam makes his last deposit on the first day of the fifth year (the month).
::Sam每月头一个月将50美元存入每个月赚取0.5 % 利息的账户。 至最近的美元,在Sam在第五年(第49个月)的第一天(即第49个月)最后一次存款之后,在账户中存了多少钱。The deposits that Sam make and the interest earned on each deposit generate a geometric series,
::Sam的存款和每笔存款的利息 产生几何序列
::S49=50+50(1.0051)1+50(1.0052)2+50(1.0053+...)+50(1.005)47+50(1.005)48, 最后一次交存第一交存Note that the first deposit earns interest for 48 months and the final deposit does not earn any interest. Now we can find the sum using , and .
::请注意,第一笔存款可赚取48个月的利息,而最后一笔存款不赚取任何利息。 现在我们可以用a1=50、r=1.005和n=49来找到这笔金额。
::S49=50(1至(1.005)49(1至1.005)________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________Review
::回顾Use the formula for the sum of a geometric series to find the sum of the first five terms in each series.
::使用几何序列总和的公式,在每个序列中找到前五个术语的总和。-
::an=36( 23n- 1) -
::an=9(--2)n- 1 -
::an=5 (- 1) n- 1 -
::an=825(52)n-1 -
::an=23(- 34n- 1)
Find the indicated sums using the formula and then check your answers with the calculator.
::使用公式查找指定金额,然后用计算器检查答案。-
::Nn=14(-1)(12)(1)(12)n-1 -
::=28(128)(14)(14)n-1 -
::=2712564(45-1) -
::=511132(-2-2)n-1
Given the sum and the common ratio, find the term rule for the series.
::考虑到总和和共同比率,请找到该系列的第n期规则。-
and
::=16an\\\\63和r2 -
and
::n=14an=671和r=56 -
and
::=1500=122和r3 -
and
::=27 =632 和 r =12
Solve the following word problems using the formula for the sum of a geometric series.
::使用几何序列之和的公式解决下列字问题。-
Sapna’s grandparents deposit $1200 into a college savings account on her
birthday. They continue to make this birthday deposit each year until making the final deposit on her
birthday. If the account earns 5% interest annually, how much is there after the final deposit?
::萨普拉的祖父母在她五岁生日时将1200美元存入大学储蓄账户。 他们每年继续将这一生日存款存入大学储蓄账户,直到她18岁生日最后存款。 如果该账户每年赚取5 % 的利息,那么在最后存款之后会有多少? -
Jeremy wants to have save $10,000 in five years. If he makes annual deposits on the first of each year and the account earns 4.5% interest annually, how much should he deposit each year in order to have $10,000 in the account after the final deposit on the first of the
year. Round your answer to the nearest $100.
::Jeremy想在五年内节省10 000美元。如果他每年在第一年存款,账户每年赚取4.5 % 的利息,那么他每年应该存入多少,才能在第六年第一年最后存款之后在账户中存10 000美元。请将您对最近100美元的答复四舍五入。
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -