12.6 帕斯卡尔三角和二亚米亚扩展系数
章节大纲
-
Without multiplying by itself five times, how could you expand
::不自行乘(x-2)五倍,你怎么扩大(x-2)5?Pascal's Triangle
::帕斯卡尔三角Each row begins and ends with a one. Each “interior” value in each row is the sum of the two numbers above it. For example, and . This pattern produces the symmetry in the triangle.
::每个行以一开头和结尾。每行的每个“内部”值是上方两个数字的和。例如, 2+1=3 和 10+10=20。此图示在三角形中产生对称。Another pattern that can be observed is that the row number is equal to the number of elements in that row. Row 1, for example has 1 element, 1. Row 2 has 2 elements, 1 and 1. Row 3 has 3 elements, 1, 2 and 1.
::另一个可以观察到的模式是,行号等于该行的元素数量。例如,行1有1个元素,行1有2个元素,行1有1个元素,行3有3个元素,1个元素,1个元素,2个元素,1个元素,1个元素,3个元素,1个元素,2个元素,1个元素,1个元素,1个元素,1个元素,3个元素,1个元素,2个元素,1个元素,1个元素,1个元素,1个元素,1个元素。A third pattern is that the second element in the row is equal to one less than the row number. For example, in row 5 we have 1, 4, 6, 4 and 1.
::第三个模式是,行中的第二个元素等于行号少一个元素。例如,在第5行,我们有1、4、6、4和1个元素。Let's continue the triangle to determine the elements in the row of Pascal’s Triangle.
::让我们继续三角形来决定帕斯卡尔三角形第九排的元素。Following the pattern of adding adjacent elements to get the elements in the next row, we find hat the eighth row is:
::按照在下一行添加相邻元素以获取元素的模式,我们发现第八排的帽子是:1 7 21 35 35 35 35 21 7 1Now, continue the pattern again to find the row:
::现在,继续这个图案 找到第九排: 1 8 28 56 70 56 28 8 1Now, let's expand the binomial and discuss the pattern within the exponents of each variable as well as the pattern found in the coefficients of each term.
::现在,让我们扩展二进制(a+b) 4, 讨论每个变量的指数内的模式以及每个术语的系数中发现的模式。
:a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a2) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a)+ (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a) (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)
-
Take two binomials at a time and square them using
::使用 (a+b) 2=a2+2ab+b2, 一次取取两个二进制, 平方 -
Next, distribute each term in the first trinomial over each term in the second trinomial and collect like terms.
::接下来,在第一个三学期中将每个学期分配到第二个三学期,并收集同样的学期。
We can see that the powers of start with 4 (the degree of the binomial) and decrease by one each term while the powers of start with zero and increase by one each term. The number of terms is 5 which is one more than the degree of the binomial. The coefficients of the terms are , the elements of row 5 in Pascal’s Triangle.
::我们可以看到,从4个开始(二进制程度)到每学期减少一个学期,B学期减少一个学期,B学期减少一个学期,B学期增加一个学期。学期数是5个学期数,比二进制程度多一个学期数。学期的系数是14 6 4 1,是帕斯卡尔三角第5行的元素。Finally, let's use what was discovered in the previous problem to expand .
::最后,让我们利用在前一个问题中发现的东西来扩展 (x+y) 6。The degree of this expansion is 6, so the powers of will begin with 6 and decrease by one each term until reaching 0 while the powers of will begin with zero and increase by one each term until reaching 6. We can write the variables in the expansion (leaving space for the coefficients) as follows:
::扩展程度为6, 因此x的权力将从6开始,每个任期减少一个,直到达到0, 而y的权力从零开始,每个任期增加一个,直到达到6, 我们可以将扩展中的变量(系数的留置空间)写如下:
::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}==========================================================================================================In the previous problem we observed that the coefficients for a fourth degree binomial were found in the fifth row of Pascal’s Triangle. Here we have a degree binomial, so the coefficients will be found in the row of Pascal’s Triangle. Now we can fill in the blanks with the correct coefficients.
::在上一个问题中,我们观察到,四度二进制系数出现在帕斯卡尔三角形第五行。 我们这里有六度二进制系数,因此这些系数将出现在帕斯卡尔三角形第七行。 现在我们可以用正确的系数填充空白。
::x6+6x5y+15x4y2+20x3y3+15x2y4+6x5+y6Examples
::实例Example 1
::例1Earlier, you were asked to expand the binomial .
::早些时候,有人要求你扩大二进制(x-2)5。To expand the binomial , you could use Pascal's Triangle.
::要扩展二进制( x-2 5) , 您可以使用帕斯卡尔的三角形 。The degree of this expansion is 5, so the powers of will begin with 5 and decrease by one each term until reaching 0 while the powers of , which in this case is , will begin with zero and increase by one each term until reaching 5. We can write the variables in the expansion (leaving space for the coefficients) as follows:
::扩展程度为5,因此x的权力将从5开始,每个任期减少一个,直到达到0,y的权力(在本案中为-2)将从零开始,每个任期增加一个,直到达到5。 我们可以将扩展中的变量(系数的留置空间)写如下:
::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}The coefficients for a fifth degree binomial can be found in the sixth row of Pascal’s Triangle. Now we can fill in the blanks with the correct coefficients, replacing y with .
::第五度二进制系数可以在帕斯卡尔三角形第六行找到。 现在我们可以用正确的系数填空空, 替换 y 。
::1x5+5x4(-2-2)+10x3(-2-2)+10x3(-2)2+10x2(-2)3+5x(-2)4+1(-2)4+1(-2)5x5-10x4+40x3-80x2+80x-32Example 2
::例2Write out the elements in row 10 of Pascal’s Triangle.
::将元素写在帕斯卡尔三角的第10行。We continued the triangle to find the row earlier and determined it to be:
::我们继续三角形 之前找到了第九排 确定为: 1 8 28 56 70 56 28 8 1Subsequently, the row is:
::随后,第十排为: 1 9 36 84 126 126 84 36 9 1Example 3
::例3Expand .
::展开(a+4) 3.
::a3+3a2(4)+3a(4)+4a(4)2+(4)3a3+12a2+48a+64Example 4
::例4Write out the coefficients in the expansion of .
::写出扩大的系数(2x-3)4。
:2x)4+4+4(2x)3(3)+6(2x)(2-3)+4(2x)(3)+4(2x)(3)3+3(3)+(3)416x4-96x3+216x2-216x2+81)
Review
::回顾-
Write out the elements in row 7 of Pascal’s Triangle.
::将元素写在帕斯卡尔三角形第7行。 -
Write out the elements in row 13 of Pascal’s Triangle.
::将元素写在帕斯卡尔三角的第13行。
Use Pascal’s Triangle to expand the following binomials.
::使用帕斯卡尔三角以扩展以下二进制。-
:x-6)4
-
:2x+5)6
-
:3-x)7
-
:x2-2)3
-
:x+4)5
-
:2-十三)4
-
:a-b)6
-
:x+1)10
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
Take two binomials at a time and square them using