13.3 逆三角函数和右三角的溶解
Section outline
-
A right triangle has legs that measure 2 units and units. What are the measures of the triangle's acute angles?
::右三角形的腿能测量2个单位和23个单位。三角形的急性角的度量是多少?Inverse of Trigonometric Functions
::三角函数的逆函数W e have used the trigonometric functions sine, cosine and tangent to find the ratio of particular sides in a right triangle given an angle. In this concept we will use the inverses of these functions, , and , to find the angle measure when the ratio of the side lengths is known. When we type into our calculator, the calculator goes to a table and finds the trig ratio associated with , which is . When we use an inverse function we tell the calculator to look up the ratio and give us the angle measure. For example: . On your calculator you would press to get and then type in , close the parenthesis and press ENTER. Your calculator screen should read when you press ENTER.
::我们使用三角函数正弦、正弦和正弦来查找右三角形中特定边边的比例。 在这个概念中, 我们将使用这些函数的反函数, sin-1、 cos-1 和 tan-1, 以找到边长比的角度量。 当我们在计算器中输入 sin\\ 30 时, 计算器会进入一个表格, 并找到与 30 相关的三角比, 也就是 12 。 当我们使用反函数时, 我们告诉计算器来查看这个比例, 并给出角度量。 例如 : sin- 1 {( 12) =30 。 在您的计算器上, 您可以按 2NDSIN 键以获得 SIN-1 ( 并在 12 键上输入), 关闭括号并按 ENTER 键。 您按 ENTER 时, 您的计算器屏幕应该读 SIN-1( 12) 。Let's find the measure of angle associated with the following ratios and round answers to the nearest degree .
::让我们找到角度A的量度 与以下比率和圆形答案相关 到最接近的程度。-
::A=0.8336 -
::泰纳=1.3527 -
::COS=0.2785 COS=0.2785
Using the calculator we get the following:
::使用计算器,我们得到以下数据:-
:0.8336) 56
-
::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -
:0.2785)74
Now, let's find the measures of the unknown angles in the triangle shown and round answers to the nearest degree.
::现在,让我们来看看三角形中 未知角度的度量 以及最接近的圆形答案We can solve for either or first. If we choose to solve for first, the 23 is opposite and 31 is adjacent so we will use the tangent ratio.
::我们可以先解决 x 或 y 先解决。 如果我们选择先解决 x 先解决, 23 是相反的, 31 是相邻的, 所以我们将使用正切比 。
::X=tan-1(2331)37。Recall that in a right triangle, the acute angles are always complementary, so , so . We can also use the side lengths an a trig ratio to solve for :
::回顾在右三角形中, 急性角度总是互补的, 所以 903753, 所以y=53。 我们也可以使用侧边长度一个三重比来解答 y:
::y'tan -1(3123) 53。Finally, let's solve the right triangle shown below and round all answers to the nearest tenth.
::最后,让我们解开下面显示的右三角形, 将所有答案转到最近的第十个答案 。We can solve for either angle or angle first. If we choose to solve for angle first, then 8 is the hypotenuse and 5 is the opposite side length so we will use the sine ratio.
::我们可以首先解决角度 A 或角度 B 。 如果我们选择先解决角度 B , 那么8 是 下限, 5 是 反侧长度, 所以我们将使用正弦比例 。
::B=58m_B=sin_1}(58)_38.7Now we can find two different ways.
::现在我们可以找到两种不同的方式。Method 1: We can using trigonometry and the cosine ratio:
::方法1:我们可以使用三角测量法和余弦比:cosA=58mA=cos-1(58)51.3Method 2: We can subtract from : since the acute angles in a right triangle are always complimentary.
::方法2:我们可以从 90\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Either method is valid, but be careful with Method 2 because a miscalculation of angle would make the measure you get for angle incorrect as well.
::这两种方法都有效,但对于方法2要小心,因为对角度B的误算会使对角度A的测量也错误。Examples
::实例Example 1
::例1Earlier, you were asked to find the measures of the triangle's acute angles.
::早些时候,有人要求你 找到三角形的急性角度的测量结果First, let's find the hypotenuse, then we can solve for either angle.
::首先,让我们找到低温, 然后我们可以解决两个角度。
::22+(23)=c24+12=c216=c2c=4One of the acute angles will have a sine of .
::一个急性角度的正弦值为 24=12。
::A=12m_A=sin_1_12=30_BAR__BAR_A=sin_1_12=30_BAR_A=sin_1_A=sin_12=30_BAR_Now we can find by subtracting from : since the acute angles in a right triangle are always complimentary.
::现在我们可以通过从 90 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \Example 2
::例2Find the measure of angle .
::查找角度A的量度。
::A=0.2894
::-1 (0.2894) 17Example 3
::例3Find the measure of angle .
::查找角度A的量度。
::A=2.1432
::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~Example 4
::例4Find the measure of angle .
::查找角度A的量度。
::A=0.8911 COS=0.8911
::================================================================================================================================== ================================================================================================================================================================================================================================Example 5
::例5Find the measures of the unknown angles in the triangle shown. Round answers to the nearest degree.
::查找所显示三角形中未知角度的度量。 圆圆回答到最接近的度。
::x=cos- 1( 1320) 49;y=sin- 1( 1320) 41Example 6
::例6Solve the triangle. Round side lengths to the nearest tenth and angles to the nearest degree.
::解开三角形。 圆边长至最近的十分点, 角度到最近的高度 。
::mA=cos-1(1738)__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________Review
::回顾Use your calculator to find the measure of angle . Round answers to the nearest degree.
::使用您的计算器找到角度 B. 圆圆答案的量值, 以至最近的度 。-
::泰纳B=0.9523 -
::B=0.8659 -
::COS=0.1568 COS=0.1568 -
::B=0.2234 -
::COS=0.4855 COS=0.4855 COS=0.4855 -
::tan_B=0.3649
Find the measures of the unknown acute angles. Round measures to the nearest degree.
::查找未知急性角度的测量。 圆形测量到最接近的程度 。Solve the following right triangles. Round angle measures to the nearest degree and side lengths to the nearest tenth.
::解决以下右三角形。圆角测量到最接近的位数和最接近的十分位数的侧边长度。Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -