Section outline

  • Your mission, should you choose to accept it, as Agent Trigonometry is to graph the function y = 2 cos x . What are the minimum and maximum of your graph?
    ::您的任务, 您是否愿意接受它, 作为Trigonology Agent 来绘制 y= 2cosx 的函数 。 您的图表的最小值和最大值是多少 ?

    Graphing Sine and Cosine
    ::Sine 和 Consine 图形图

    In this concept, we will take the unit circle and graph it on the Cartesian plane.
    ::在这个概念中,我们将用单位圆来图解这个单位圆,然后用笛卡尔飞机来图解它。

    To do this, we are going to “unravel” the unit circle. Recall that for the unit circle the coordinates are ( cos θ , sin θ ) where θ is the central angle. To graph, y = sin x rewrite the coordinates as ( x , sin x ) where x is the central angle, in radians. Below we expanded the sine coordinates for 3 π 4 .
    ::为此,我们将“ unravel” 单位圆。 提醒注意对于单位圆来说, 坐标是 ° 的中心角( cos, sin) 。 要图形, y=sinx 将坐标重写为 x (x, sinx) 的中心角, 以弧度表示。 在下面, 我们将正弦坐标扩大为 3}4 。

    lesson content

    Notice that the curve ranges from 1 to -1. The maximum value is 1, which is at x = π 2 . The minimum value is -1 at x = 3 π 2 . This “height” of the sine function is called the . The amplitude is the absolute value of average between the highest and lowest points on the curve.
    ::注意曲线从 1 到 - 1 。 最大值为 1 , 在 x @ @ 2 。 最小值为 - 1 , 在 x=3% 2 。 正弦函数的“ 高度” 称为 。 振幅是曲线上最高点和最低点之间的平均值的绝对值 。

    Now, look at the domain. It seems that, if we had continued the curve, it would repeat. This means that the sine curve is periodic . Look back at the unit circle, the sine value changes until it reaches 2 π . After 2 π , the sine values repeat. Therefore, the curve above will repeat every 2 π units, making the period 2 π . The domain is all real numbers.
    ::现在,看看这个域。 如果我们继续曲线, 它会重复。 这意味着正弦曲线是周期性的。 回顾单位圆, 正弦值会变化, 直到它达到 2Q。 在 2Q 之后, 正弦值会重复。 因此, 上面的曲线会重复每个 2Q 单位, 使时间段为 2Q 。 域是全部真实的数字 。

    lesson content

    Similarly, when we expand the cosine curve, y = cos x , from the unit circle, we have:
    ::同样,当我们从单位圆中扩展余弦曲线y=cosx时,我们有:

    lesson content

    Notice that the range is also between 1 and -1 and the domain will be all real numbers. The cosine curve is also periodic, with a period of 2 π . If we draw the graph past 2 π , it would look like:
    ::注意范围也介于 1 和 - 1 之间, 域将全部为真实数字。 余弦曲线也是定期的, 时长为 2 。 如果我们将图画过 2, 它看起来像 :

    lesson content

    Comparing y = sin x and y = cos x (below), we see that the curves are almost identical, except that the sine curve starts at y = 0 and the cosine curve starts at y = 1 .
    ::比较 y=sinx 和 y=cosx (以下),我们看到曲线几乎完全相同,但正弦曲线以 y=0 开头,余弦曲线以 y=1开头。

    lesson content

    If we shift either curve π 2 units to the left or right, they will overlap. Any horizontal shift of a trigonometric function is called a phase shift .
    ::如果我们将曲线 2 单位向左或向右移动, 它们就会重叠。 三角函数的任何水平移动都被称为相移 。

    Let's identify the highlighted points on y = sin x and y = cos x below.
    ::让我们确定下面的 y=sinx 和y=cosx 上的亮点 。

    lesson content

    For each point, think about what the sine or cosine value is at those values. For point A , sin π 4 = 2 2 , therefore the point is ( π 4 , 2 2 ) . For point B , we have to work backwards because it is not exactly on a vertical line, but it is on a horizontal one. When is sin x = 1 2 ? When x = 7 π 6 or 11 π 6 . By looking at point B ’s location, we know it is the second option. Therefore, the point is ( 11 π 6 , 1 2 ) .
    ::对于每一个点,请想一想这些值的正弦值或余弦值。 对于 A 点, sin4=22, 因此点是( 4, 22) 。 对于 B 点, 我们必须倒着工作, 因为它不完全在垂直线上, 而是在水平线上 。 当sinx12 时? 当 x= 76 或 116 时。 通过查看 B 点的位置, 我们知道这是第二个选项。 因此, 点是 (116, 12) 。 因此, 点是 (116, 12) 。

    For the cosine curve, point C is the same as point A because the for π 4 is the same. As for point D , we use the same logic as we did for point B . When does cos x = 1 2 ? When x = 2 π 3 or 4 π 3 . Again, looking at the location of point D , we know it is the second option. The point is ( 4 π 3 , 1 2 ) .
    ::对于余弦曲线, C点与 A 点相同, 因为 + 4 相同。 至于 D 点, 我们使用的逻辑与 B 点相同 。 当 = x = 12 时? 当 x= 2 3 或 4 3 时 。 同样, 查看 D 点的位置, 我们知道这是第二个选项 。 点是 (4Q3 3 12 ) 。

    Amplitude
    ::振幅

    In addition to graphing y = sin x and y = cos x , we can stretch the graphs by placing a number in front of the sine or cosine, such as y = a sin x or y = a cos x . | a | is the amplitude of the curve.
    ::除了绘制 y=sinx 和 y=cosx 外, 我们可以在正弦或余弦前放置数字, 如 y=asinx 或 y=acosx 。 a 表示曲线的振幅 。

    Let's graph y = 3 sin x over two periods.
    ::让我们在两个周期内绘制 y=3sinx 的图表。

    Start with the basic sine curve. Recall that one period of the parent graph, y = sin x , is 2 π . Therefore, two periods will be 4 π . The 3 indicates that the range will now be from 3 to -3 and the curve will be stretched so that the maximum is 3 and the minimum is -3. The red curve is y = 3 sin x .
    ::以基本正弦曲线开始 。 提醒注意, 父图形的一个时段, y=sinx, 是 2。 因此, 两个时段将是 4。 3 表示范围现在为 3 到 - 3, 曲线将被拉伸, 最大值为 3, 最小值为 - 3 。 红曲线是 y= 3sinx 。

    lesson content

    Notice that the x -intercepts are the same as the parent graph. Typically, when we graph a trigonometric function, we always show two full periods of the function to indicate that it does repeat.
    ::请注意 X 界面与父图形相同。 通常, 当我们绘制三角函数时, 我们总是显示两个完整的函数周期, 以显示它重复 。

    Now, let's graph y = 1 2 cos x over two periods.
    ::现在,让我们用Y=12cos=x来图两个时期。

    Now, the amplitude will be 1 2 and the function will be “smooshed” rather than stretched.
    ::现在,振幅将是12,功能将是“消沉”而不是拉伸。

    lesson content

    Finally, let's graph y = sin x over two periods.
    ::最后,让我们用两段时间来图表ysinx。

    The last two problems  dealt with changing a and a was positive. Now, a is negative. Just like with other functions, when the leading coefficient is negative, the function is reflected over the x -axis. y = sin x is in red.
    ::后两个问题涉及改变一个是正。 现在, 一个是负的。 就像其他函数一样, 当主要系数为负时, 该函数会反映在 x 轴上。 ysinx 是红色的 。

    lesson content

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find  the minimum and maximum of the graph  y = 2 cos x .
    ::早些时候,你被要求找到 y=2cosx 的最小和最大图形 。

    The 2 in front of the cosine function indicates that the range will now be from 2 to –2 and the curve will be stretched so that the maximum is 2 and the minimum is –2.
    ::余弦函数前面的 2 表示范围现在从 2 到 - 2, 曲线将被拉伸, 最大值为 2 , 最小值为 - 2 。

    Example 2
    ::例2

    Is the point ( 5 π 6 , 1 2 ) on y = sin x ? How do you know?
    ::y=sinx是点(56,12)吗?你怎么知道?

    Substitute in the point for x and y and see if the equation holds true.
    ::以 x 和 y 的点替代, 看看方程是否正确 。

    1 2 = sin ( 5 π 6 )
    ::12=sin( 56)

    This is true, so ( 5 π 6 , 1 2 ) is on the graph.
    ::这是事实,所以图上是(5-6-12)图。

    Graph the following functions for two full periods.
    ::以下图示两个完整期间的函数。

    Example 3
    ::例3

    y = 6 cos x
    ::y=6xx y=6xx

    Stretch the cosine curve so that the maximum is 6 and the minimum is -6.
    ::伸展余弦曲线,使最大值为6,最低值为-6。

    lesson content

    Example 4
    ::例4

    y = 3 cos x
    ::y 3cos x y 3cos x

    The graph is reflected over the x -axis and stretched so that the amplitude is 3.
    ::该图在 X 轴上方反射,并拉伸,使振幅为 3。

    Example 5
    ::例5

    y = 3 2 sin x
    ::y=32sinx

    The fraction is equivalent to 1.5, making 1.5 the amplitude.
    ::分数等于1.5,使1.5成振幅。

    Review
    ::回顾

    1. Determine the exact value of each point on y = sin x or y = cos x .
      ::确定 y=sinx 或 y=cosx 上的每个点的准确值 。
    2. List all the points in the interval [ 0 , 4 π ] where sin x = cos x . Use the graph from #1 to help you.
      ::列出 sinx=cosx 的间距 [0,4] 中的所有点。 使用 # 1 的图表来帮助您 。
    3. Draw from y = sin x from [ 0 , 2 π ] . Find f ( π 3 ) and f ( 5 π 3 ) . Plot these values on the curve.
      ::从 y=sinx 从 [ 0, 2] 中绘制。 查找 fegg 3 和 f( 53)。 在曲线上绘制这些值 。

    For questions 4-12, graph the sine or cosine curve over two periods.
    ::对于问题4-12,请用图形显示两个时期的正弦或余弦曲线。

    1. y = 2 sin x
      ::y=2sinx
    2. y = 5 cos x
      ::y 5cos x y 5cosx y 5cosx
    3. y = 1 4 cos x
      ::y=14cosx
    4. y = 2 3 sin x
      ::y y 23sin x y 23sin_x
    5. y = 4 sin x
      ::y=4sinx
    6. y = 1.5 cos x
      ::y$1.5cosx( y$1.5cosx)
    7. y = 5 3 cos x
      ::y=53cosx
    8. y = 10 sin x
      ::y=10sinx
    9. y = 7.2 sin x
      ::y7.2sinx
    10. Graph y = sin x and y = cos x on the same set of axes. How many units would you have to shift the sine curve (to the left or right) so that it perfectly overlaps the cosine curve?
      ::图形 y=sinx 和 y=cosx 在同一组轴上。 您需要将正弦曲线( 向左或向右) 移动多少个单位才能完全重合余弦曲线 ?
    11. Graph y = sin x and y = cos x on the same set of axes. How many units would you have to shift the sine curve (to the left or right) so that it perfectly overlaps y = cos x ?
      ::相同轴上的 y=sinx 和 ycosx 图形。 您需要将正弦曲线( 向左或向右) 移动多少个单位才能完全重合 ycosx ?

    Write the equation for each sine or cosine curve below. a > 0 for both questions.
    ::为下方的正弦或余弦曲线写出方程。 a>0 为两个问题写出方程。

    1. lesson content
    2. lesson content

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。