Section outline

  • Your mission, should you choose to accept it, as Agent Trigonometry is to the find the domain and the range of the function y = 1 2 sin ( x + 2 ) 3 .
    ::您的任务, 如果您选择接受它, 因为Trigono量度代理是找到域和函数 y= 12sin( x+2) - 3 的范围 。

    Graphing Functions
    ::图图函数

    Here you'll change the , the horizontal shifts, vertical shifts , and reflections.
    ::在这里,你将改变, 横向的转变,垂直的转变, 和反射。

    Let's graph y = 4 sin ( x π 4 )  and find the domain and range.
    ::让我们绘制 y= 4sin(x4) 并找到域和范围 。

    First, stretch the curve so that the amplitude is 4, making the maximums and minimums 4 and -4. Then, shift the curve π 4 units to the right.
    ::首先,拉伸曲线,使振幅为 4 , 使最大和最小值为 4 和 - 4 。 然后, 将曲线 + 4 单位向右移动 。

    As for the domain, it is all real numbers because the sine curve is periodic and infinite. The range will be from the maximum to the minimum; y [ 4 , 4 ] .
    ::至于域,它都是真实的数字, 因为正弦曲线是周期性的, 无限的。 范围从最大到最小; y y [- 4, 4] 。

    Now, let's graph y = 2 cos ( x 1 ) + 1  and find the domain and range.
    ::现在,让我们来绘制 y2cos (x- 1) +1, 并找到域名和范围 。

    The -2 indicates the cosine curve is flipped and stretched so that the amplitude is 2. Then, move the curve up one unit and to the right one unit.
    ::-2表示余弦曲线被翻转和拉伸,使振幅为2,然后将曲线向上移动一个单位,向右移动一个单位。

    The domain is all real numbers and the range is y [ 1 , 3 ] .
    ::域名是所有真实数字,范围是y[-1,3]。

    Finally, let's find the equation of the sine curve below.
    ::最后,让我们在下面找到正弦曲线的方程。

    First, let’s find the amplitude. The range is from 1 to -5, which is a total distance of 6. Divided by 2, we find that the amplitude is 3. Halfway between 1 and -5 is 1 + ( 5 ) 5 = 2 , so that is our vertical shift. Lastly, we need to find the horizontal shift. The easiest way to do this is to superimpose the curve y = 3 sin ( x ) 2 over this curve and determine the movement from one maximum to the closest maximum of this curve.
    ::首先,让我们找到振幅。 范围从1到5, 总距离是6, 除以2, 我们发现振幅是3, 1到5之间的半径是1+( - 5-5)52, 这就是我们垂直的转变。 最后, 我们需要找到横向的转变。 最简单的办法是将曲线 y=3sin( x)-2 叠加到这个曲线上, 并确定从这个曲线的最大一个向最接近的最大移动 。

    Subtracting π 2 and π 6 , we have:
    ::以2和6为减号,我们已:

    π 2 π 6 = 3 π 6 π 6 = 2 π 6 = π 3

    Making the equation y = 3 sin ( x + π 3 ) 2 .
    ::使公式y=3sin(x3)-2。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find the domain and range of the function  y = 1 2 sin ( x + 2 ) 3 .
    ::早些时候, 您被要求查找 y= 12sin {( x+2) - 3 函数的域名和范围 。

    The 1 2 indicates the sine curve is smooshed so that the amplitude is 1 2 . Then, move the curve down two units and to the left three units.
    ::12 表示正弦曲线被打乱, 使振幅为12。 然后, 将曲线向下移动两个单位, 向左移动三个单位 。

    The domain is all real numbers and the range is y [ 5 2 , 3 2 ] .
    ::域名是所有实际数字,范围是y[-52,-32]。

    For Examples 2 & 3, graph the functions. State the domain and range. Show two full periods.
    ::对于例2和例3,请绘制函数图。说明域和范围。显示两个完整的周期。

    Example 2
    ::例2

    y = 2 sin ( x π 2 )
    ::y2sin(x%2)

    The domain is all real numbers and the range is y [ 2 , 2 ] .
    ::域名是所有真实数字,范围是y[-2,2]。

    Example 3
    ::例3

    y = 1 3 cos ( x + 1 ) 2
    ::y=13cos( x+1)-2

     The domain is all real numbers and the range is y [ 2 1 3 , 1 2 3 ] .
    ::域名是所有实际数字,范围是y[-213,-123]。

    Example 4
    ::例4

    Write one sine equation and one cosine equation for the curve below.
    ::为下面的曲线写一个正弦方程和一个正弦方程。

    The amplitude and vertical shift is the same, whether the equation is a sine or cosine curve. The vertical shift is -2 because that is the number that is halfway between the maximum and minimum. The difference between the maximum and minimum is 1, so the amplitude is half of that, or 1 2 . As a sine curve, the function is y = 2 + 1 2 sin x . As a cosine curve, there will be a shift of π 2 , y = 1 2 cos ( x π 2 ) 2 .
    ::振幅和垂直变化是相同的, 不论方程式是正弦曲线还是正弦曲线。 垂直变化是 - 2, 因为数字是最大和最小值之间的一半。 最大和最小值之间的差值是 1, 因此振幅是该值的一半, 或12。 作为正弦曲线, 函数是 y2+12sinx。 作为正弦曲线, 将会有 2, y=12cos( x2)-2 的移动 。

    Review
    ::回顾

    Determine if the following statements are true or false.
    ::确定以下声明是真实的还是虚假的。

    1. To change a cosine curve into a sine curve, shift the curve π 2 units.
      ::将余弦曲线改变为正弦曲线,将曲线 2 单位移动。
    2. For any given sine or cosine graph, there are infinitely many possible equations that can be written to represent the curve.
      ::对于任何给定的正弦或正弦图,可以写出无数可能的方程式来表示曲线。
    3. The amplitude is the same as the maximum value of the sine or cosine curve.
      ::振幅与正弦或余弦曲线的最大值相同。
    4. The horizontal shift is always in terms of π .
      ::横向变化总是以 为单位。
    5. The domain of any sine or cosine function is always all real numbers.
      ::任何正弦或余弦函数的域始终是所有实际数字。

    Graph the following sine or cosine functions such that x [ 2 π , 2 π ] . State the domain and range.
    ::下图的正弦函数或余弦函数为 x[-222]。请标明域和范围。

    1. y = sin ( x + π 4 ) + 1
      ::y=sin(x4)+1
    2. y = 2 3 cos x
      ::y=2 - 3cosx
    3. y = 3 4 sin ( x 2 π 3 )
      ::y=34sin(x-23)
    4. y = 5 sin ( x 3 ) 2
      ::y5sin(x-3)-2
    5. y = 2 cos ( x + 5 π 6 ) 1.5
      ::y=2cos(x+56)-1.5
    6. y = 2.8 cos ( x 8 ) + 4
      ::y2.8cos(x-8)+4

    Use the graph below to answer questions 12-15.
    ::用下图回答问题12-15。

    1. Write a sine equation for the function where the amplitude is positive.
      ::为振幅为正数的函数写入正数等式。
    2. Write a cosine equation for the function where the amplitude is positive.
      ::为振幅为正数的函数写入余弦方程。
    3. How often does a sine or cosine curve repeat itself? How can you use this to help you write different equations for the same graph?
      ::正弦或余弦曲线的重复频率是多少? 您如何使用它来帮助您为同一图表写出不同的方程式 ?
    4. Write a second sine and cosine equation with different horizontal shifts.
      ::以不同的水平移动写入二次正弦和连弦方程。

    Use the graph below to answer questions 16-20.
    ::用下图回答问题16-20。

    1. Write a sine equation for the function where the amplitude is positive.
      ::为振幅为正数的函数写入正数等式。
    2. Write a cosine equation for the function where the amplitude is positive.
      ::为振幅为正数的函数写入余弦方程。
    3. Write a sine equation for the function where the amplitude is negative .
      ::在振幅为负值的函数中写入正弦方程。
    4. Write a cosine equation for the function where the amplitude is negative .
      ::为振幅为负的函数写入余弦方程。
    5. Describe the similarities and differences between the four equations from questions 16-19.
      ::说明问题16-19的四个方程之间的相似和不同之处。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。