14.5 图表切图
Section outline
-
Your mission, should you choose to accept it, as Agent Trigonometry is to find the period and the zeros of the function .
::您的任务, 如果您选择接受它, 作为Trigonology Agent 是要找到 y= 12tan4x 函数的周期和零 。Graph of a Tangent Function
::Tangent 函数图形图The graph of the tangent function is very different from the functions. First, recall that the tangent ratio is . In radians, the coordinate for the tangent function would be
::相切函数的图形与函数非常不同。 首先, 请记住, 相切比是 tan 。 在弧度中, 相切函数的坐标是 (, tan) 。
::-6 -4 -4 -3 -3 -3 3 -3 3After , the -values repeat, making the tangent function periodic with a period of .
::在 __之后, Y 值重复,使正切函数周期化为 __。The red portion of the graph represents the coordinates in the table above. Repeating this portion, we get the entire tangent graph. Notice that there are vertical asymptotes at and . If we were to extend the graph out in either direction, there would continue to be vertical asymptotes at the odd multiples of . Therefore, the domain is all real numbers, , where is an integer. The range would be all real numbers. Just like with sine and cosine functions, you can change the , phase shift , and vertical shift .
::图表的红色部分代表上表的坐标 。 重复此部分, 我们可以看到整个正切图 。 注意在 x32, 2, 2, 2 和 32 32 上存在垂直小数 。 如果我们将图表向任一方向扩展, 则在 2 的奇数中将继续出现垂直小数 。 因此, 域名是所有真实数字 xn2 , 其中 n 是一个整数 。 范围将是所有真实数字 。 就像正弦和正弦函数一样, 您可以更改、 相向移动和垂直移动 。The standard form of the equation is where and are the same as they are for the other trigonometric functions . For simplicity, we will not address phase shifts in this concept.
::方程式的标准形式是 y = atatanb( x-h)+k, 其中 a, b, h, h, k 与其他三角函数相同。为了简单起见,我们不会在此概念中处理( k) 的阶段转移 。Let's graph from and state the domain and range.
::让我们从 [- 2- 2 2 ] 绘制 y= 3tanx+1 的图形, 并标出域和范围 。First, the amplitude is 3, which means each -value will be tripled. Then, we will shift the function up one unit.
::首先,振幅是3,这意味着每个y值将增加三倍。然后,我们将将功能转换成一个单位。Notice that the vertical asymptotes did not change. The period of this function is still . Therefore, if we were to change the period of a tangent function, we would use a different formula than what we used for sine and cosine. To change the period of a tangent function, use the formula .
::注意垂直微粒没有改变。此函数的期间仍然是 。因此,如果我们改变正切函数的期间,我们将使用与正弦和正弦不同的公式。要改变正切函数的期间,请使用 b 公式。The domain will be all real numbers, except where the asymptotes occur. Therefore, the domain of this function will be . The range is all real numbers.
::域名将全部为真实数字, 但小数点发生时除外。 因此, 此函数的域名将是 xR, xn2。 范围为所有真实数字 。Now, let's graph from , state the domain and range, and find all zeros within this domain.
::现在,让我们从 [ 0, 2] 绘制 ytan2, 说明域和范围, 并在此域中查找所有零 。The period of this tangent function will be and the curves will be reflected over the -axis.
::此相切函数的期间为 2, 曲线将反射到 X 轴上。The domain is all real numbers, where is any integer. The range is all real numbers. To find the zeros, set .
::域名是所有真实数字, n 是任意整数的 x4, 34, 54, 54, 74, 442n。 范围是全部真实数字。 要找到零, 请设定 y=0 。
::0tan2x0 = tan2x2x = 10=0, 22, 3, 4x=0, 2, 2, 2, 2Finally, let's graph from and state the domain and range.
::最后,让我们从 [0,4] 绘制 y= 14tan14x 的图表, 并标出域和范围 。This function has a period of . The domain is all real numbers, except , where is any integer. The range is all real numbers.
::此函数的期间为 14=4。域名为所有实际数字,但 N 是任意整数的 2, 6, 10, 24n 除外。 范围为所有实际数字 。Examples
::实例Example 1
::例1Earlier, you were asked to find the period and zeros of the function .
::早些时候,您被要求找到函数 y= 12tan4x 的周期和零 。The period is .
::这一期间为4。The zeros are where is zero.
::零是Y是零。
::012tan4x0=tan4x4x=tan-10=0, 22, 3x=14 0, 22, 3x)x0, 4, 2, 342xExample 2
::例2Find the period of the function .
::查找函数 y4tan32x 的周期。The period is .
::报告期为3223=23。Example 3
::例3Find the zeros of the function from Example 2, from .
::从例2从 [0,2] 中查找函数的零。The zeros are where is zero.
::04tan32x0=tan32x32xx=tan-10=0, 22, 3x=23(0223, 3)x=0, 244, 33, 22}Example 4
::例4Find the equation of the tangent function with an amplitude of 8 and a period of .
::查找正切函数的方程式,其振幅为8,期间为6。The general equation is . We know that . Let’s use the period to solve for the frequency, or .
::一般方程式是 y=atanbx。 我们知道 a=8. 让我们用这个时间来解答频率, 或 b 。
::=66616The equation is .
::方程式是y=8tan16xReview
::回顾Graph the following tangent functions over . Determine the period, domain, and range.
::在 [0,4] 上方绘制以下相切函数图。确定周期、域和范围。-
::y=2tanx -
::y 13tanx y 13tanx -
::y3x -
::y=4tan2x -
::y= y12tan4x -
::y 12x -
::y=4+tanx -
::y3+tan3x -
::y=1+23tan12x -
Find the zeros of the function from #1.
::从 # 1 查找函数的零。 -
Find the zeros of the function from #3.
::从 # 3 查找函数的零。 -
Find the zeros of the function from #5.
::从 # 5 查找函数的零。
Write the equation of the tangent function, in the form , with the given amplitude and period.
::以 y=atanbx 的形式,用给定的振幅和时段写入正切函数的方程式。-
Amplitude: 3 Period:
::振幅: 3 周期: 3×2 -
Amplitude:
Period:
::振幅:14 周期: 2 -
Amplitude: -2.5 Period: 8
::振幅: -2.5 周期: 8 -
Challenge
Graph
over
. Determine the domain and period.
::图y=2tan13(x4)-1,超过[0,6]。确定域和时间段。
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -