Section outline

  • Your mission, should you choose to accept it, as Agent Trigonometry is to find the period and the zeros of the function y = 1 2 tan 4 x
    ::您的任务, 如果您选择接受它, 作为Trigonology Agent 是要找到 y= 12tan4x 函数的周期和零 。

    Graph of a Tangent Function
    ::Tangent 函数图形图

    The graph of the tangent function is very different from the functions. First, recall that the tangent ratio is tan θ = opposite adjacent . In radians, the coordinate for the tangent function would be ( θ , tan θ )
    ::相切函数的图形与函数非常不同。 首先, 请记住, 相切比是 tan 。 在弧度中, 相切函数的坐标是 (, tan) 。

    x θ 0 π 6 π 4 π 3 π 2 2 π 3 3 π 4 5 π 6 π y tan θ 0 3 3 1 3 und. 3 1 3 3 0

    ::-6 -4 -4 -3 -3 -3 3 -3 3

    After π , the y -values repeat, making the tangent function periodic with a period of π .
    ::在 __之后, Y 值重复,使正切函数周期化为 __。

    The red portion of the graph represents the coordinates in the table above. Repeating this portion, we get the entire tangent graph. Notice that there are vertical asymptotes at x = 3 π 2 , π 2 , π 2 and 3 π 2 . If we were to extend the graph out in either direction, there would continue to be vertical asymptotes at the odd multiples of π 2 . Therefore, the domain is all real numbers, x n π ± π 2 , where n is an integer. The range would be all real numbers. Just like with sine and cosine functions, you can change the , phase shift , and vertical shift .
    ::图表的红色部分代表上表的坐标 。 重复此部分, 我们可以看到整个正切图 。 注意在 x32, 2, 2, 2 和 32 32 上存在垂直小数 。 如果我们将图表向任一方向扩展, 则在 2 的奇数中将继续出现垂直小数 。 因此, 域名是所有真实数字 xn2 , 其中 n 是一个整数 。 范围将是所有真实数字 。 就像正弦和正弦函数一样, 您可以更改、 相向移动和垂直移动 。

    The standard form of the equation is y = a tan b ( x h ) + k where a , b , h , and k are the same as they are for the other trigonometric functions . For simplicity, we will not address phase shifts ( k ) in this concept.
    ::方程式的标准形式是 y = atatanb( x-h)+k, 其中 a, b, h, h, k 与其他三角函数相同。为了简单起见,我们不会在此概念中处理( k) 的阶段转移 。

    Let's graph y = 3 tan x + 1 from [ 2 π , 2 π ]  and state the domain and range.
    ::让我们从 [- 2- 2 2 ] 绘制 y= 3tanx+1 的图形, 并标出域和范围 。

    First, the amplitude is 3, which means each y -value will be tripled. Then, we will shift the function up one unit.
    ::首先,振幅是3,这意味着每个y值将增加三倍。然后,我们将将功能转换成一个单位。

    Notice that the vertical asymptotes did not change. The period of this function is still π . Therefore, if we were to change the period of a tangent function, we would use a different formula than what we used for sine and cosine. To change the period of a tangent function, use the formula π | b | .
    ::注意垂直微粒没有改变。此函数的期间仍然是 。因此,如果我们改变正切函数的期间,我们将使用与正弦和正弦不同的公式。要改变正切函数的期间,请使用 b 公式。

    The domain will be all real numbers, except where the asymptotes occur. Therefore, the domain of this function will be x R , x n π ± π 2 . The range is all real numbers.
    ::域名将全部为真实数字, 但小数点发生时除外。 因此, 此函数的域名将是 xR, xn2。 范围为所有真实数字 。

    Now, let's graph y = tan 2 π from [ 0 , 2 π ] , state the domain and range, and find all zeros within this domain.
    ::现在,让我们从 [ 0, 2] 绘制 ytan2, 说明域和范围, 并在此域中查找所有零 。

    The period of this tangent function will be π 2 and the curves will be reflected over the x -axis.
    ::此相切函数的期间为 2, 曲线将反射到 X 轴上。

    The domain is all real numbers, x π 4 , 3 π 4 , 5 π 4 , 7 π 4 , π 4 ± π 2 n where n is any integer. The range is all real numbers. To find the zeros, set y = 0 .
    ::域名是所有真实数字, n 是任意整数的 x4, 34, 54, 54, 74, 442n。 范围是全部真实数字。 要找到零, 请设定 y=0 。

    0 = tan 2 x 0 = tan 2 x 2 x = tan 1 0 = 0 , π , 2 π , 3 π , 4 π x = 0 , π 2 , π , 3 π 2 , 2 π

    ::0tan2x0 = tan2x2x = 10=0, 22, 3, 4x=0, 2, 2, 2, 2

    Finally, let's graph y = 1 4 tan 1 4 x from [ 0 , 4 π ] and state the domain and range.
    ::最后,让我们从 [0,4] 绘制 y= 14tan14x 的图表, 并标出域和范围 。

    This function has a period of π 1 4 = 4 π . The domain is all real numbers, except 2 π , 6 π , 10 π , 2 π ± 4 π n , where n is any integer. The range is all real numbers.
    ::此函数的期间为 14=4。域名为所有实际数字,但 N 是任意整数的 2, 6, 10, 24n 除外。 范围为所有实际数字 。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find  the period and zeros of the function  y = 1 2 tan 4 x
    ::早些时候,您被要求找到函数 y= 12tan4x 的周期和零 。

    The period is π 4 .
    ::这一期间为4。

    The zeros are where y is zero.
    ::零是Y是零。

    0 = 1 2 tan 4 x 0 = tan 4 x 4 x = tan 1 0 = 0 , π , 2 π , 3 π x = 1 4 ( 0 , π , 2 π , 3 π ) x = 0 , π 4 , π 2 , 3 4 π

    ::012tan4x0=tan4x4x=tan-10=0, 22, 3x=14 0, 22, 3x)x0, 4, 2, 342x

    Example 2
    ::例2

    Find the period of the function y = 4 tan 3 2 x .
    ::查找函数 y4tan32x 的周期。

    The period is π 3 2 = π 2 3 = 2 π 3 .
    ::报告期为3223=23。

    Example 3
    ::例3

    Find the zeros of the function from Example 2, from [ 0 , 2 π ] .
    ::从例2从 [0,2] 中查找函数的零。

    The zeros are where y is zero.

    0 = 4 tan 3 2 x 0 = tan 3 2 x 3 2 x = tan 1 0 = 0 , π , 2 π , 3 π x = 2 3 ( 0 , π , 2 π , 3 π ) x = 0 , 2 π 3 , 4 π 3 , 2 π

    ::04tan32x0=tan32x32xx=tan-10=0, 22, 3x=23(0223, 3)x=0, 244, 33, 22}

    Example 4
    ::例4

    Find the equation of the tangent function with an amplitude of 8 and a period of 6 π .
    ::查找正切函数的方程式,其振幅为8,期间为6。

    The general equation is y = a tan b x . We know that a = 8 . Let’s use the period to solve for the frequency, or b .
    ::一般方程式是 y=atanbx。 我们知道 a=8. 让我们用这个时间来解答频率, 或 b 。

    π b = 6 π b = π 6 π = 1 6

    ::=66616

    The equation is y = 8 tan 1 6 x .
    ::方程式是y=8tan16x

    Review
    ::回顾

    Graph the following tangent functions over [ 0 , 4 π ] . Determine the period, domain, and range.
    ::在 [0,4] 上方绘制以下相切函数图。确定周期、域和范围。

    1. y = 2 tan x
      ::y=2tanx
    2. y = 1 3 tan x
      ::y 13tanx y 13tanx
    3. y = tan 3 x
      ::y3x
    4. y = 4 tan 2 x
      ::y=4tan2x
    5. y = 1 2 tan 4 x
      ::y= y12tan4x
    6. y = tan 1 2 x
      ::y 12x
    7. y = 4 + tan x
      ::y=4+tanx
    8. y = 3 + tan 3 x
      ::y3+tan3x
    9. y = 1 + 2 3 tan 1 2 x
      ::y=1+23tan12x
    10. Find the zeros of the function from #1.
      ::从 # 1 查找函数的零。
    11. Find the zeros of the function from #3.
      ::从 # 3 查找函数的零。
    12. Find the zeros of the function from #5.
      ::从 # 5 查找函数的零。

    Write the equation of the tangent function, in the form y = a tan b x , with the given amplitude and period.
    ::以 y=atanbx 的形式,用给定的振幅和时段写入正切函数的方程式。

    1. Amplitude: 3 Period: 3 π 2
      ::振幅: 3 周期: 3×2
    2. Amplitude: 1 4 Period: 2 π
      ::振幅:14 周期: 2
    3. Amplitude: -2.5 Period: 8
      ::振幅: -2.5 周期: 8
    4. Challenge Graph y = 2 tan 1 3 ( x + π 4 ) 1 over [ 0 , 6 π ] . Determine the domain and period.
      ::图y=2tan13(x4)-1,超过[0,6]。确定域和时间段。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。