Section outline

  • You are given the following information about θ
    ::您获得以下有关 _______ 的信息 :

    sin θ = 2 3 , π 2 < θ < π
    ::23,22212222222222222222222222222222222222222222222222222222222222222

    What are cos θ and tan θ ?
    ::什么是Cos和Tan?

    Trigonometric Identities
    ::三角度数特征

    You can use the Pythagorean, Tangent and to find all six trigonometric values for certain angles. Let’s walk through a few problems  so that you understand how to do this.
    ::您可以使用 Pytagorian, Tangent , 并找到某些角度的所有六个三角值。 让我们从几个问题中走过, 以便您了解如何做到这一点 。

    Let's solve the following problems using trigonometric identities.
    ::让我们用三角特征来解决以下的问题。

    1. Given that cos θ = 3 5 and 0 < θ < π 2 , find sin θ .
      ::鉴于这一点,cos35和02, 找到sin。

    Use the Pythagorean Identity to find sin θ .
    ::利用毕达哥里人的身份来找到罪

    sin 2 θ + cos 2 θ = 1 sin 2 θ + ( 3 5 ) 2 = 1 sin 2 θ = 1 9 25 sin 2 θ = 16 25 sin θ = ± 4 5

    :sad352)=1sin2=1sin2=1 -925sin2=1625sin_45)

    Because θ is in the first quadrant, we know that sine will be positive. sin θ = 4 5
    ::因为在第一象限,我们知道正弦是正的。

    1. Find tan θ from #1 above.
      ::从上面的 # 1 找到 tan 。

    Use the Tangent Identity to find tan θ .
    ::使用“切换身份”来查找 tan 。

    tan θ = sin θ cos θ = 4 5 3 5 = 4 3

    ::-4535=43 -43 -4535=43

    1. Find the other three trigonometric functions of θ from #1.
      ::从 # 1 中找到另外三个三角函数 。

    To find secant, cosecant , and cotangent use the Reciprocal Identities.
    ::寻找分离, 腐蚀, 和余切 使用对等特征。

    csc θ = 1 sin θ = 1 4 5 = 5 4 sec θ = 1 cos θ = 1 3 5 = 5 3 cot θ = 1 tan θ = 1 4 3 = 3 4

    ::145=54sec1cos=135=53cot1tan}143=34

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find   cos θ  and  tan θ  of   sin θ = 2 3 , π 2 < θ < π
    ::早些时候,你被要求 寻找cos 和tan sin232。

    First, use the Pythagorean Identity to find cos θ .
    ::首先,使用毕达哥里人的身份来寻找Cos。

    sin 2 θ + cos 2 θ = 1 ( 2 3 ) 2 + cos 2 θ = 1 cos 2 θ = 1 4 9 cos 2 θ = 5 9 cos θ = ± 5 3

    ::==================================================================================================================================

    However, because θ is restricted to the second quadrant, the cosine must be negative. Therefore, cos θ = 5 3 .
    ::然而,由于仅限于第二象限, 余弦必须是负的。 因此, cos53 。

    Now use the Tangent Identity to find tan θ .
    ::现在使用“ 唐氏 身份” 来查找 tan_ 。

    tan θ = sin θ cos θ = 2 3 5 3 = 2 5 = 2 5 5

    ::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}23 -53 {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}25

    Find the values of the other five trigonometric functions.
    ::查找其他五个三角函数的值。

    Example 2
    ::例2

    tan θ = 5 12 , π 2 < θ < π
    ::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}我... {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}我... {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}我...

    First, we know that θ is in the second quadrant, making sine positive and cosine negative. For this problem, we will use the Pythagorean Identity 1 + tan 2 θ = sec 2 θ to find secant.
    ::首先,我们知道位于第二象限,正反正反正。 对于这个问题,我们将使用“毕达哥伦人身份”1+tan2sec2来寻找分离者。

    1 + ( 5 12 ) 2 = sec 2 θ 1 + 25 144 = sec 2 θ 169 144 = sec 2 θ ± 13 12 = sec θ 13 12 = sec θ

    ::1+(- 512) 2=sec21+25144=sec2169144=sec21312=sec1312=sec

    If sec θ = 13 12 , then cos θ = 12 13 . sin θ = 5 13 because the numerator value of tangent is the sine and it has the same denominator value as cosine. csc θ = 13 5 and cot θ = 12 5 from the Reciprocal Identities.
    ::如果秒=121212,则CO=12133.sin=513,因为正切值的分子值是正弦值,它与正弦值的csine.csc=135和cot=125具有相同的分母值。

    Example 3
    ::例3

    csc θ = 8 , π < θ < 3 π 2
    ::8,3,2,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,3,3,3,3,3,3,3,3,3,3,3,2,3,3,3,3,3,3,3,2,3,3,3,3,2,3,3,3,2,3,3,2,3,3,2,3,2,2,2,2,2,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,

    θ is in the third quadrant, so both are negative. The reciprocal of csc θ = 8 , will give us sin θ = 1 8 . Now, use the Pythagorean Identity sin 2 θ + cos 2 θ = 1 to find cosine.
    ::位于第三个象限内, 所以两者都是负的。 cscQQQQQ8的对等将给我们18。 现在, 使用 Pythagoren 身份 sin2Qcos2QQQ1 来寻找 Cosine 。

    ( 1 8 ) 2 + cos 2 θ = 1 cos 2 θ = 1 1 64 cos 2 θ = 63 64 cos θ = ± 3 7 8 cos θ = 3 7 8

    :sad-188)2+cos21cos21-164cos26364cos_378cos_378)

    sec θ = 8 3 7 = 8 7 21 , tan θ = 1 3 7 = 7 21 , and cot θ = 3 7
    ::8378721,tan137=721,和cot37

    Review
    ::回顾

    1. In which quadrants is the sine value positive? Negative?
      ::在哪些条件中,必备价值是正的?负的?
    2. In which quadrants is the cosine value positive? Negative?
      ::余值在哪个量值中呈正数? 负数 ?
    3. In which quadrants is the tangent value positive? Negative?
      ::相切值在哪个四分位数中是正数? 负数?

    Find the values of the other five trigonometric functions of θ .
    ::查找其他五个三角函数的值 。

    1. sin θ = 8 17 , 0 < θ < π 2
      :sad九九)817,0,0,2
    2. cos θ = 5 6 , π 2 < θ < π
      ::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}为什么? {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}为什么?
    3. tan θ = 3 4 , 0 < θ < π 2
      ::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~~ ~~ ~~~~~~~ ~ ~ ~ ~~~ ~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    4. sec θ = 41 9 , π < θ < 3 π 2
      ::秒419,32
    5. sin θ = 11 14 , 3 π 2 < θ < 2 π
      ::1114,32222
    6. cos θ = 2 2 , 0 < θ < π 2
      ::约22,02
    7. cot θ = 5 , π < θ < 3 π 2
      ::科特5,5,3,2
    8. csc θ = 4 , π 2 < θ < π
      :sadc) 4,4,2
    9. tan θ = 7 10 , 3 π 2 < θ < 2 π
      ::710,3222
    10. Aside from using the identities, how else can you find the values of the other five trigonometric functions?
      ::除了使用身份之外,你还能找到另外五个三角函数的值吗?
    11. Given that cos θ = 6 11 and θ is in the 2 n d quadrant, what is sin ( θ ) ?
      ::鉴于Cos611和在第二象限,什么是罪?
    12. Given that tan θ = 5 8 and θ is in the 4 t h quadrant, what is sec ( θ ) ?
      ::鉴于Tan58和 是在第四象限, 什么是秒()?

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。