14.9 核实三角特征
Section outline
-
Verify that .
::验证 sin2\\ xtan2\\\ x=1 -sin2\\ xVerifying Trigonometric Identities
::校验三角特征Now that you are comfortable simplifying expressions, we will extend the idea to verifying entire identities. Here are a few helpful hints to verify an identity :
::现在你们可以轻松地简化表达方式, 我们将扩展这个想法, 以验证整个身份。 以下是一些有用的提示, 来验证身份 :-
Change everything into terms of
.
::改变一切 成为条件。 -
Use the identities when you can.
::使用身份,只要你能够。 -
Start with simplifying the left-hand side of the equation, then, once you get stuck, simplify the right-hand side. As long as the two sides end up with the same final expression, the identity is true.
::从简化方程的左侧开始,然后,一旦你卡住了,就简化右侧。只要两侧最后的表达式相同,身份就是真实的。
Let's verify the following identities.
::我们来验证一下以下身份-
::comt2xcscx=cscx-sinx
Rather than have an equal sign between the two sides of the equation, we will draw a vertical line so that it is easier to see what we do to each side of the equation. Start with changing everything into sine and cosine.
::与其在等式的两面之间有一个平等的标志,我们不如画一条垂直线,以便更容易地看到我们对等式的两面都做了些什么。 从将一切改变为正弦和正弦开始。
::COT2xcscxcscx-sinxcos2xsin2xsin2x1sinx1sinx-sinxxcos2xsin}xxsinxcos2xsin}xxsin*xxxxxxxin*xxxxxin*xxxxinNow, it looks like we are at an impasse with the left-hand side. Let’s combine the right-hand side by giving them same denominator.
::现在,我们似乎陷入了左手一方的僵局。 让我们把右手一边结合起来,给他们同样的分母。
::1sin_x-sin2_xin_xin_x1_sin2_xin_xcos2_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xxin_xin_xin_xxxin_xin_xxin_xxin_xxin_xxxin_xxx_xx_xxxx_xx_xx_xxx_xxx_xxx_x_xx_xx_xx_xx_xx__xxx_xx_x_xx_x_xx_x_x_x_x____x_x_x_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________The two sides reduce to the same expression, so we can conclude this is a valid identity. In the last step, we used the Pythagorean Identity, , and isolated the .
::双方缩小为相同的表达式, 所以我们可以得出这是一个有效的身份 。 在最后一步, 我们使用 Pythagorean 身份, sin2cos221, 并隔离 cos2x=1-sin2x 。There are usually more than one way to verify a trig identity. When proving this identity in the first step, rather than changing the cotangent to , we could have also substituted the identity .
::通常有不止一种方法来验证三重身份。 当第一步证明此身份时, 而不是将余切值更改为 os2 xsin2 x, 我们还可以替换身份 com2 x= csc2 x- 1 。-
::ciux1 - cosx=1+cosxinxx
Multiply the left-hand side of the equation by .
::乘以方程式的左侧, 乘以 1+cosx1+cosx。
::cox1 -cos*%x=1+cos**x1+cos**x1+cos**x1+cos**x1_x1_cos*x=sin*(1+cos***x)1_cos2*x=sin*(1+cos***x)2x=1+cos*xin*x=1The two sides are the same, so we are done.
::双方是相同的,我们就这样结束了。-
::秒( - x) =secx
Change secant to cosine.
::切换为余弦 。
::秒 *(- x) = 1cos * (- x)From the Negative Angle Identities, we know that .
::从负角特征中,我们知道Cos(-x)=cosx。
::= 1cosx=secxExamples
::实例Example 1
::例1Earlier, you were asked to verify that .
::早些时候,你被要求验证 sin2\\xtan2\x=1 -sin2\xx。Start by simplifying the left-hand side of the equation.
::首先简化方程的左侧。
::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}... {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}... {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}... {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}... {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}Now simplify the right-hand side of the equation. By manipulating the Trigonometric Identity ,
::现在简化方程的右侧。通过操纵三角测量特性,, we get .
::sin2=2x+cos2x=1,我们得到cos2x=1-sin2x。and the equation is verified.
::cos2x=cos2x 和方程式被校验 。Verify the following identities.
::验证以下身份 。Example 2
::例2
::COSxseecx=1Change secant to cosine.
::切换为余弦 。
::COSxseecx=cos1cosx=1Example 3
::例3
::2 - sec2x=1 - tan2xUse the identity .
::使用身份 1+tan2sec2。
::2 - sec2x=2 -(1+tan2x)=2 - 1 - tan2x=1 - tan2x=1 - tan2xxExample 4
::例4
::COs(- x)1+sin(- x)=secx+tanxHere, start with the Negative Angle Identities and multiply the top and bottom by to make the denominator a monomial.
::在此, 从负角识别开始, 将顶部和底部乘以 1+sinx1+sinx, 使分母成为单项 。
::cos( x) 1+sin( x) 1+sin( x) =cos( x) ( x) =cosin( x) ( x) ( x) =cosin( x) ( x) ( x) =cos ( x) ( x) =cos( x) ( x) =cos( x) ( x) =cos( x) +sin( x) ( x) +sin( x) ( x) +sin( x) ( x=sec( x) ( x) ( x) 1-cos( 1+sin( x) ( 1) ( 1+sin( x) ( x) ( x) ( x) ( 1) = 1+sin( x) ( x) ( x) ( x= 1)= 1cosus@x@x@x@x@x=x=x=x=x@x=x=x=x=x=x=x=x=x=x=x=x=xReview
::回顾Verify the following identities.
::验证以下身份 。-
::comt( - x) cotx -
::csc( - x) cscx -
::tanxcscxcosx=1 NAME OF TRANSLATORS -
::ciux+cosxcotx=cscx -
::csc(%2-x) =secx -
::tan(%2 - x) =tanx -
::cscxsinx-cotxtanx=1 -
::tan2xtan2x+1=sin2x -
:sinx-cosx)2+(sinx+cosx)2=2
-
::xx=sin3xxxxxxxxxxxxxxin3xxxxx -
::tan2_x+1+tan_xseec_x=1+sin_xcos2_xx -
::CO2 x= csc xcos xtan x+cotx -
::11 - sinx- 11+sinx=2tanxseecxx -
::csc4x-cot4x=csc2x+cot2x -
:sinx-tanx (cosx-cotx) = (sinx-1)(cosx-1)
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
Change everything into terms of
.