Section outline

  • Verify that sin 2 x tan 2 x = 1 sin 2 x .
    ::验证 sin2\\ xtan2\\\ x=1 -sin2\\ x

    Verifying Trigonometric Identities
    ::校验三角特征

    Now that you are comfortable simplifying expressions, we will extend the idea to verifying entire identities. Here are a few helpful hints to verify an identity :
    ::现在你们可以轻松地简化表达方式, 我们将扩展这个想法, 以验证整个身份。 以下是一些有用的提示, 来验证身份 :

    • Change everything into terms of .
      ::改变一切 成为条件。
    • Use the identities when you can.
      ::使用身份,只要你能够。
    • Start with simplifying the left-hand side of the equation, then, once you get stuck, simplify the right-hand side. As long as the two sides end up with the same final expression, the identity is true.
      ::从简化方程的左侧开始,然后,一旦你卡住了,就简化右侧。只要两侧最后的表达式相同,身份就是真实的。

    Let's verify the following identities.
    ::我们来验证一下以下身份

    1. cot 2 x csc x = csc x sin x
      ::comt2xcscx=cscx-sinx

    Rather than have an equal sign between the two sides of the equation, we will draw a vertical line so that it is easier to see what we do to each side of the equation. Start with changing everything into sine and cosine.
    ::与其在等式的两面之间有一个平等的标志,我们不如画一条垂直线,以便更容易地看到我们对等式的两面都做了些什么。 从将一切改变为正弦和正弦开始。

    cot 2 x csc x csc x sin x cos 2 x sin 2 x 1 sin x 1 sin x sin x cos 2 x sin x
    ::COT2xcscxcscx-sinxcos2xsin2xsin2x1sinx1sinx-sinxxcos2xsin}xxsinxcos2xsin}xxsin*xxxxxxxin*xxxxxin*xxxxin

    Now, it looks like we are at an impasse with the left-hand side. Let’s combine the right-hand side by giving them same denominator.
    ::现在,我们似乎陷入了左手一方的僵局。 让我们把右手一边结合起来,给他们同样的分母。

    1 sin x sin 2 x sin x 1 sin 2 x sin x cos 2 x sin x
    ::1sin_x-sin2_xin_xin_x1_sin2_xin_xcos2_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xin_xxin_xin_xin_xxxin_xin_xxin_xxin_xxin_xxxin_xxx_xx_xxxx_xx_xx_xxx_xxx_xxx_x_xx_xx_xx_xx_xx__xxx_xx_x_xx_x_xx_x_x_x_x____x_x_x_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    The two sides reduce to the same expression, so we can conclude this is a valid identity. In the last step, we used the Pythagorean Identity, sin 2 θ + cos 2 θ = 1 , and isolated the cos 2 x = 1 sin 2 x .
    ::双方缩小为相同的表达式, 所以我们可以得出这是一个有效的身份 。 在最后一步, 我们使用 Pythagorean 身份, sin2cos221, 并隔离 cos2x=1-sin2x 。

    There are usually more than one way to verify a trig identity. When proving this identity in the first step, rather than changing the cotangent to cos 2 x sin 2 x , we could have also substituted the identity cot 2 x = csc 2 x 1 .
    ::通常有不止一种方法来验证三重身份。 当第一步证明此身份时, 而不是将余切值更改为 os2 xsin2 x, 我们还可以替换身份 com2 x= csc2 x- 1 。

    1. sin x 1 cos x = 1 + cos x sin x
      ::ciux1 - cosx=1+cosxinxx

    Multiply the left-hand side of the equation by 1 + cos x 1 + cos x .
    ::乘以方程式的左侧, 乘以 1+cosx1+cosx。

    sin x 1 cos x = 1 + cos x sin x 1 + cos x 1 + cos x sin x 1 cos x = sin ( 1 + cos x ) 1 cos 2 x = sin ( 1 + cos x ) sin 2 x = 1 + cos x sin x =

    ::cox1 -cos*%x=1+cos**x1+cos**x1+cos**x1+cos**x1_x1_cos*x=sin*(1+cos***x)1_cos2*x=sin*(1+cos***x)2x=1+cos*xin*x=1

    The two sides are the same, so we are done.
    ::双方是相同的,我们就这样结束了。

    1. sec ( x ) = sec x
      ::秒( - x) =secx

    Change secant to cosine.
    ::切换为余弦 。

    sec ( x ) = 1 cos ( x )

    ::秒 *(- x) = 1cos * (- x)

    From the Negative Angle Identities, we know that cos ( x ) = cos x .
    ::从负角特征中,我们知道Cos(-x)=cosx。

    = 1 cos x = sec x

    ::= 1cosx=secx

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to verify that  sin 2 x tan 2 x = 1 sin 2 x
    ::早些时候,你被要求验证 sin2\\xtan2\x=1 -sin2\xx。

    Start by simplifying the left-hand side of the equation.
    ::首先简化方程的左侧。

    sin 2 x tan 2 x = sin 2 x sin 2 x cos 2 x = cos 2 x

    ::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}... {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}... {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}... {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}... {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}

    Now simplify the right-hand side of the equation. By manipulating the Trigonometric Identity ,
    ::现在简化方程的右侧。通过操纵三角测量特性,

    sin 2 x + cos 2 x = 1 , we get cos 2 x = 1 sin 2 x .
    ::sin2=2x+cos2x=1,我们得到cos2x=1-sin2x。

    cos 2 x = cos 2 x and the equation is verified.
    ::cos2x=cos2x 和方程式被校验 。

    Verify the following identities.
    ::验证以下身份 。

    Example 2
    ::例2

    cos x sec x = 1
    ::COSxseecx=1

    Change secant to cosine.
    ::切换为余弦 。

    cos x sec x = cos 1 cos x = 1

    ::COSxseecx=cos1cosx=1

    Example 3
    ::例3

    2 sec 2 x = 1 tan 2 x
    ::2 - sec2x=1 - tan2x

    Use the identity 1 + tan 2 θ = sec 2 θ .
    ::使用身份 1+tan2sec2。

    2 sec 2 x = 2 ( 1 + tan 2 x ) = 2 1 tan 2 x = 1 tan 2 x

    ::2 - sec2x=2 -(1+tan2x)=2 - 1 - tan2x=1 - tan2x=1 - tan2xx

    Example 4
    ::例4

    cos ( x ) 1 + sin ( x ) = sec x + tan x
    ::COs(- x)1+sin(- x)=secx+tanx

    Here, start with the Negative Angle Identities and multiply the top and bottom by 1 + sin x 1 + sin x to make the denominator a monomial.
    ::在此, 从负角识别开始, 将顶部和底部乘以 1+sinx1+sinx, 使分母成为单项 。

    cos ( x ) 1 + sin ( x ) = cos x 1 sin x 1 + sin x 1 + sin x = cos x ( 1 + sin x ) 1 sin 2 x = cos x ( 1 + sin x ) cos 2 x = 1 + sin x cos x = 1 cos x + sin x cos x = sec x + tan x

    ::cos( x) 1+sin( x) 1+sin( x) =cos( x) ( x) =cosin( x) ( x) ( x) =cosin( x) ( x) ( x) =cos ( x) ( x) =cos( x) ( x) =cos( x) ( x) =cos( x) +sin( x) ( x) +sin( x) ( x) +sin( x) ( x=sec( x) ( x) ( x) 1-cos( 1+sin( x) ( 1) ( 1+sin( x) ( x) ( x) ( x) ( 1) = 1+sin( x) ( x) ( x) ( x= 1)= 1cosus@x@x@x@x@x=x=x=x=x@x=x=x=x=x=x=x=x=x=x=x=x=x

    Review
    ::回顾

    Verify the following identities.
    ::验证以下身份 。

    1. cot ( x ) = cot x
      ::comt( - x) cotx
    2. csc ( x ) = csc x
      ::csc( - x) cscx
    3. tan x csc x cos x = 1
      ::tanxcscxcosx=1 NAME OF TRANSLATORS
    4. sin x + cos x cot x = csc x
      ::ciux+cosxcotx=cscx
    5. csc ( π 2 x ) = sec x
      ::csc(%2-x) =secx
    6. tan ( π 2 x ) = tan x
      ::tan(%2 - x) =tanx
    7. csc x sin x cot x tan x = 1
      ::cscxsinx-cotxtanx=1
    8. tan 2 x tan 2 x + 1 = sin 2 x
      ::tan2xtan2x+1=sin2x
    9. ( sin x cos x ) 2 + ( sin x + cos x ) 2 = 2
      :sadsinx-cosx)2+(sinx+cosx)2=2
    10. sin x sin x cos 2 x = sin 3 x
      ::xx=sin3xxxxxxxxxxxxxxin3xxxxx
    11. tan 2 x + 1 + tan x sec x = 1 + sin x cos 2 x
      ::tan2_x+1+tan_xseec_x=1+sin_xcos2_xx
    12. cos 2 x = csc x cos x tan x + cot x
      ::CO2 x= csc xcos xtan x+cotx
    13. 1 1 sin x 1 1 + sin x = 2 tan x sec x
      ::11 - sinx- 11+sinx=2tanxseecxx
    14. csc 4 x cot 4 x = csc 2 x + cot 2 x
      ::csc4x-cot4x=csc2x+cot2x
    15. ( sin x tan x ) ( cos x cot x ) = ( sin x 1 ) ( cos x 1 )
      :sadsinx-tanx (cosx-cotx) = (sinx-1)(cosx-1)

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。