14.10 用代数解决三角等同
Section outline
-
G iven: . If , what is/are the value(s) of ?
::给定值: 2sinx-2=0。 如果 0x < 2, x 的值是多少?Solving Trigonometric Equations
::解决三角等量等量We have already verified trigonometric identities, which are true for every real value of . In this concept, we will solve trigonometric equations. An equation is only true for some values of .
::我们已经核实了三角特征, 这对x的每一个真实值都是真实的。 在这个概念中, 我们将解决三角方程。 公式只对x的某些值是真实的 。Let's verify that when .
::让我们验证 x=5=6 时 cscx- 2=0 。Substitute in to see if the equations holds true.
::以 x= 56 代替来查看方程式是否正确 。
::csc(56)-2=01sin(56)-2=0112-2=02-2=0This is a true statement, so is a solution to the equation.
::这是一个真实的语句, 所以 x=56 是方程式的解决方案 。Now, let's solve .
::现在,让我们解决2cosx+1=0。To solve this equation, we need to isolate and then use inverse to find the values of when the equation is valid.
::要解析此方程式, 我们需要分离 cosx, 然后在公式有效时使用反向来找到 x 的值 。
::2cos*x+1=02cos*x*1cos*x*12So, when is the ? Between and . But, the trig functions are periodic, so there are more solutions than just these two. You can write the general solutions as and , where is any integer. You can check your answer graphically by graphing and on the same set of axes. Where the two lines intersect are the solutions.
::那么, COsx* 12 是什么时候? 在 0x < 2, x=23 和 43 之间 ? 但是, 三角函数是周期性的, 所以有比这两个函数更多的解决方案。 您可以以 x=232n 和 x=432n 写入一般解决方案, n 是任意的整数 。 您可以用图形在相同的轴上绘制 y=cosx 和 y12 来查看您的答案。 两条线是相交的解决方案 。Finally, let's solve , where .
::最后,让我们解决5tan(x+2)-1=0,0x<2。In this problem, we have an interval where we want to find . Therefore, at the end of the problem, we will need to add or subtract , the period of tangent, to find the correct solutions within our interval.
::在此问题上,我们有一个间隔,我们想找到x。 因此,在问题结束时,我们需要增加或减去相左时期,以便在我们的间隔内找到正确的解决办法。
::5tan(x+2)-1=05tan(x+2)=1tan(x+2)=15Using the button on your calculator, we get that . Therefore, we have:
::使用您的计算器上的 tan-1 按钮, 我们得到的 tan-1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ -\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
::x+2 =0. 1974x @ @ @% 1. 8026This answer is not within our interval. To find the solutions in the interval, add a couple of times until we have found all of the solutions in .
::此答案不在我们的间隔内。 要找到间隔内的解决方案, 请在找到 [ 02] 中的所有解决方案之前, 添加 + 几次 。
::1.80261.3390=1.33904.4806The two solutions are and 4.4806.
::两种解决办法是x=1.3390和4.4806。Examples
::实例Example 1
::例1Earlier, you were asked to find the value of x from the equation .
::早些时候, 您被要求从 2sinx-2=0 方程式中找到 x 的值 。To solve this equation, we need to isolate and then use inverse to find the values of when the equation is valid.
::要解决这个方程式, 我们需要分离 sinx , 然后在公式有效时使用反向来找到 x 的值 。
::2sinx-2=02sinx=2sinx=22So now we need to find the values of for which . We know from the special triangles that this value of sine holds true for a angle, but is that the only value of for which it is true?
::所以我们现在需要找到 x 的值, 因为 sinx=22 。 我们从特殊的三角中知道, 这个正弦值对于 45 角度来说是真实的, 但是它是 x 唯一真实的值吗 ?We are told that . Recall that the sine is positive in both the first and second quadrants, so when also is .
::我们被告知 0x<2Q。 回顾正弦在第一和第二四点都是正的, 所以sinx=22 当 x 也为 135 时 。Example 2
::例2Determine if is a solution for .
::确定 x3 是否为 2sinx=3 的解决方案 。Yes, is a solution.
::2sin3=3232=3 是, x3是一个解决方案 。Example 3
::例3Solve the following trig equation in the interval .
::在 0. x < 2 间距内解决以下三重方程 。
::9cos2x-5=0
::9cos2%x-5=09cos2x=5cos2x=59cos*x=59cos*x53The at rad (use your graphing calculator). To find the other value where cosine is positive, subtract 0.243 from , rad.
::x=0.243 rad 的 cosx=53 (使用您的图形计算计算器) 。 要找到其他正余弦值, 请从 2 x= 2 = 2. 0. 243 = 6. 037 rad 中减去 0. 243 。The at rad, which is in the quadrant. To find the other value where cosine is negative (the quadrant), use the reference angle , 0.243, and add it to . rad.
::x=2.412 rad 的 cosx53, 位于第二象限。 要找到余弦为负( 第三象限)的其他值, 请使用 0. 243 的引用角度, 并将其添加到 x. x0. 243 =3.383 rad 。Example 4
::例4Solve the following trig equation in the interval .
::在 0. x < 2 间距内解决以下三重方程 。
::3sec(x- 1)+2=0Here, we will find the solution within the given range, .
::在这里,我们将在给定范围内找到解决方案, 0x<2。
::3sec(x- 1) +2=03sec(x-1) 2sec(x-1) 2sec(x-1) 23cos(x-1) 32At this point, we can stop. The range of the cosine function is from 1 to -1. is outside of this range, so there is no solution to this equation.
::此时,我们可以停止。 余弦函数的范围从 1 到 - 1. 。 - 32 不属于此范围, 因此无法解决此等式 。Review
::回顾Determine if the following values for . are solutions to the equation .
::确定 x. 的以下值是否是公式 5+6cscx=17的解决方案 。-
::x76 -
::x=116 -
::x=56
Solve the following trigonometric equations. If no solutions exist, write no solution .
::解决以下三角方程式。 如果没有解决方案, 请不要写入解决方案 。-
::1 - COsx=0 -
::3tanx-3=0 -
::4cosx=2cosx+1 -
::5sinx-2=2sinx+4 -
::秒 *%x - 4sec*x -
::tan2(x-2)=3
Sole the following trigonometric equations within the interval . If no solutions exist, write no solution .
::在 0. x < 2 的间距内将以下三角方程分离出来。 如果没有解决方案, 请不要写入解决方案 。-
::COsx=sinx -
::- 3cscx=2 -
::6sin(x-2)=14 -
::7cosx-4=1 -
::5+4cot2x=17 -
::2 辛2 x-7 6
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -