Section outline

  • G iven: 2 sin x 2 = 0 . If 0 x < 2 π , what is/are the value(s) of x ?
    ::给定值: 2sinx-2=0。 如果 0x < 2, x 的值是多少?

    Solving Trigonometric Equations
    ::解决三角等量等量

    We have already verified trigonometric identities, which are true for every real value of x . In this concept, we will solve trigonometric equations. An equation is only true for some values of x .
    ::我们已经核实了三角特征, 这对x的每一个真实值都是真实的。 在这个概念中, 我们将解决三角方程。 公式只对x的某些值是真实的 。

    Let's verify that csc x 2 = 0 when x = 5 π 6 .
    ::让我们验证 x=5=6 时 cscx- 2=0 。

    Substitute in x = 5 π 6 to see if the equations holds true.
    ::以 x= 56 代替来查看方程式是否正确 。

    csc ( 5 π 6 ) 2 = 0 1 sin ( 5 π 6 ) 2 = 0 1 1 2 2 = 0 2 2 = 0

    ::csc(56)-2=01sin(56)-2=0112-2=02-2=0

    This is a true statement, so x = 5 π 6 is a solution to the equation.
    ::这是一个真实的语句, 所以 x=56 是方程式的解决方案 。

    Now, let's solve 2 cos x + 1 = 0 .
    ::现在,让我们解决2cosx+1=0。

    To solve this equation, we need to isolate cos x and then use inverse to find the values of x when the equation is valid.
    ::要解析此方程式, 我们需要分离 cosx, 然后在公式有效时使用反向来找到 x 的值 。

    2 cos x + 1 = 0 2 cos x = 1 cos x = 1 2

    ::2cos*x+1=02cos*x*1cos*x*12

    So, when is the cos x = 1 2 ? Between 0 x < 2 π , x = 2 π 3 and 4 π 3 . But, the trig functions are periodic, so there are more solutions than just these two. You can write the general solutions as x = 2 π 3 ± 2 π n and x = 4 π 3 ± 2 π n , where n is any integer. You can check your answer graphically by graphing y = cos x and y = 1 2 on the same set of axes. Where the two lines intersect are the solutions.
    ::那么, COsx* 12 是什么时候? 在 0x < 2, x=23 和 43 之间 ? 但是, 三角函数是周期性的, 所以有比这两个函数更多的解决方案。 您可以以 x=232n 和 x=432n 写入一般解决方案, n 是任意的整数 。 您可以用图形在相同的轴上绘制 y=cosx 和 y12 来查看您的答案。 两条线是相交的解决方案 。

    Finally, let's solve 5 tan ( x + 2 ) 1 = 0 , where 0 x < 2 π .
    ::最后,让我们解决5tan(x+2)-1=0,0x<2。

    In this problem, we have an interval where we want to find x . Therefore, at the end of the problem, we will need to add or subtract π , the period of tangent, to find the correct solutions within our interval.
    ::在此问题上,我们有一个间隔,我们想找到x。 因此,在问题结束时,我们需要增加或减去相左时期,以便在我们的间隔内找到正确的解决办法。

    5 tan ( x + 2 ) 1 = 0 5 tan ( x + 2 ) = 1 tan ( x + 2 ) = 1 5

    ::5tan(x+2)-1=05tan(x+2)=1tan(x+2)=15

    Using the tan 1 button on your calculator, we get that tan 1 ( 1 5 ) = 0.1974 . Therefore, we have:
    ::使用您的计算器上的 tan-1 按钮, 我们得到的 tan-1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ -\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    x + 2 = 0.1974 x = 1.8026

    ::x+2 =0. 1974x @ @ @% 1. 8026

    This answer is not within our interval. To find the solutions in the interval, add π a couple of times until we have found all of the solutions in [ 0 , 2 π ] .
    ::此答案不在我们的间隔内。 要找到间隔内的解决方案, 请在找到 [ 02] 中的所有解决方案之前, 添加 + 几次 。

    x = 1.8026 + π = 1.3390 = 1.3390 + π = 4.4806

    ::1.80261.3390=1.33904.4806

    The two solutions are x = 1.3390 and 4.4806.
    ::两种解决办法是x=1.3390和4.4806。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find the value of x from the equation  2 sin x 2 = 0
    ::早些时候, 您被要求从 2sinx-2=0 方程式中找到 x 的值 。

    To solve this equation, we need to isolate sin x and then use inverse to find the values of x when the equation is valid.
    ::要解决这个方程式, 我们需要分离 sinx , 然后在公式有效时使用反向来找到 x 的值 。

    2 sin x 2 = 0 2 sin x = 2 sin x = 2 2

    ::2sinx-2=02sinx=2sinx=22

    So now we need to find the values of x for which sin x = 2 2 . We know from the special triangles that this value of sine holds true for a 45 angle, but is that the only value of x for which it is true?
    ::所以我们现在需要找到 x 的值, 因为 sinx=22 。 我们从特殊的三角中知道, 这个正弦值对于 45 角度来说是真实的, 但是它是 x 唯一真实的值吗 ?

    We are told that 0 x < 2 π . Recall that the sine is positive in both the first and second quadrants, so sin x = 2 2 when x also is 135 .
    ::我们被告知 0x<2Q。 回顾正弦在第一和第二四点都是正的, 所以sinx=22 当 x 也为 135 时 。

    Example 2
    ::例2

    Determine if x = π 3 is a solution for 2 sin x = 3 .
    ::确定 x3 是否为 2sinx=3 的解决方案 。

    2 sin π 3 = 3 2 3 2 = 3 Yes, x = π 3 is a solution.
    ::2sin3=3232=3 是, x3是一个解决方案 。

    Example 3
    ::例3

    Solve the following trig equation in the interval 0 x < 2 π .
    ::在 0. x < 2 间距内解决以下三重方程 。

    9 cos 2 x 5 = 0
    ::9cos2x-5=0

    9 cos 2 x 5 = 0 9 cos 2 x = 5 cos 2 x = 5 9 cos x = ± 5 3

    ::9cos2%x-5=09cos2x=5cos2x=59cos*x=59cos*x53

    The cos x = 5 3 at x = 0.243 rad (use your graphing calculator). To find the other value where cosine is positive, subtract 0.243 from 2 π , x = 2 π 0.243 = 6.037 rad.
    ::x=0.243 rad 的 cosx=53 (使用您的图形计算计算器) 。 要找到其他正余弦值, 请从 2 x= 2 = 2. 0. 243 = 6. 037 rad 中减去 0. 243 。

    The cos x = 5 3 at x = 2.412 rad, which is in the 2 n d quadrant. To find the other value where cosine is negative (the 3 r d quadrant), use the reference angle , 0.243, and add it to π . x = π + 0.243 = 3.383 rad.
    ::x=2.412 rad 的 cosx53, 位于第二象限。 要找到余弦为负( 第三象限)的其他值, 请使用 0. 243 的引用角度, 并将其添加到 x. x0. 243 =3.383 rad 。

    Example 4
    ::例4

    Solve the following trig equation in the interval  0 x < 2 π .
    ::在 0. x < 2 间距内解决以下三重方程 。

    3 sec ( x 1 ) + 2 = 0
    ::3sec(x- 1)+2=0

    Here, we will find the solution within the given range, 0 x < 2 π .
    ::在这里,我们将在给定范围内找到解决方案, 0x<2。

    3 sec ( x 1 ) + 2 = 0 3 sec ( x 1 ) = 2 sec ( x 1 ) = 2 3 cos ( x 1 ) = 3 2

    ::3sec(x- 1) +2=03sec(x-1) 2sec(x-1) 2sec(x-1) 23cos(x-1) 32

    At this point, we can stop. The range of the cosine function is from 1 to -1. 3 2 is outside of this range, so there is no solution to this equation.
    ::此时,我们可以停止。 余弦函数的范围从 1 到 - 1. 。 - 32 不属于此范围, 因此无法解决此等式 。

    Review
    ::回顾

    Determine if the following values for x . are solutions to the equation 5 + 6 csc x = 17 .
    ::确定 x. 的以下值是否是公式 5+6cscx=17的解决方案 。

    1. x = 7 π 6
      ::x76
    2. x = 11 π 6
      ::x=116
    3. x = 5 π 6
      ::x=56

    Solve the following trigonometric equations. If no solutions exist, write no solution .
    ::解决以下三角方程式。 如果没有解决方案, 请不要写入解决方案 。

    1. 1 cos x = 0
      ::1 - COsx=0
    2. 3 tan x 3 = 0
      ::3tanx-3=0
    3. 4 cos x = 2 cos x + 1
      ::4cosx=2cosx+1
    4. 5 sin x 2 = 2 sin x + 4
      ::5sinx-2=2sinx+4
    5. sec x 4 = sec x
      ::秒 *%x - 4sec*x
    6. tan 2 ( x 2 ) = 3
      ::tan2(x-2)=3

    Sole the following trigonometric equations within the interval 0 x < 2 π . If no solutions exist, write no solution .
    ::在 0. x < 2 的间距内将以下三角方程分离出来。 如果没有解决方案, 请不要写入解决方案 。

    1. cos x = sin x
      ::COsx=sinx
    2. 3 csc x = 2
      ::- 3cscx=2
    3. 6 sin ( x 2 ) = 14
      ::6sin(x-2)=14
    4. 7 cos x 4 = 1
      ::7cosx-4=1
    5. 5 + 4 cot 2 x = 17
      ::5+4cot2x=17
    6. 2 sin 2 x 7 = 6
      ::2 辛2 x-7 6

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。