Section outline

  • As Agent Trigonometry, you are given this clue: 2 cos 2 x 3 cos x + 1 = 0 . If x falls in the interval 0 x < 2 π , what is/are its possible value(s)?
    ::作为代理 Trigonology , 您获得了这个线索 : 2cos2 x-3cosx+1=0。 如果 x 坠落于 0. x < 2 的间距, 那么它可能值是多少 ?

    Solving Trigonometric Equations 
    ::解决三角等量等量

    Another way to solve a trig equation is to use factoring or the quadratic formula. Let’s look at a few   problems .
    ::另一种解决三重方程的方法是使用保理或二次公式。 让我们来看看几个问题。

    Let's solve the following trigonometric equations.
    ::让我们解决以下三角方程。

    1. Solve sin 2 x 3 sin x + 2 = 0 .
      ::解决sin2x-3sinx+2=0。

    This sine equation looks a lot like the quadratic x 2 3 x + 2 = 0 which factors to be ( x 2 ) ( x 1 ) = 0 and the solutions are x = 2 and 1. We can factor the trig equation in the exact same manner. Instead of just x , we will have sin x in the factors.
    ::这个正弦方程看起来与四方形 x2 - 3x+2=0( x-2 (x-1)=0) 的因数非常相似, 答案是 x=2 和 1 。 我们可以以同样的方式乘以三方方方程 。 与其只乘以 x, 我们的因数中将会有 sinx 。

    sin 2 x 3 sin x + 2 = 0 ( sin x 2 ) ( sin x 1 ) = 0 sin x = 2   a n d   sin x = 1

    :sadsinx-2)(sinx-1)=0sinx=2和sinx=1)

    There is no solution for sin x = 2 and sin x = 1 when x = π 2 ± 2 π n .
    ::当 x222n 时, sin2=2 和 sinx=1 没有解决之道 。

    1. Solve 1 sin x = 3 cos x in the interval 0 x < 2 π .
      ::在 0 x < 2 间距内, 溶解 1 - sinx= 3cosx 。

    To solve this equation, use the Pythagorean Identity sin 2 x + cos 2 x = 1 . Solve for either cosine and substitute into the equation. cos x = 1 sin 2 x
    ::要解析此方程式, 请使用 Pythagorea 身份身份 sin2\\\ x+cos2\\\\\ x=1. 解决两个余弦并替换为公式 。 cos=x=1- sin2\\\ x

    1 sin x = 3 1 sin 2 x ( 1 sin x ) 2 = 3 3 sin 2 x 2 1 2 sin x + sin 2 x = 3 3 sin 2 x 4 sin 2 x 2 sin x 2 = 0 2 sin 2 x sin x 1 = 0 ( 2 sin x + 1 ) ( sin x 1 ) = 0

    ::1- 辛x=3- 3- 辛x2x( 1- 辛x)2=3- 3sin2x21-2sinx+sin2x=3- 3sin2x4sin2x-2x-2sinx-2=02sin2x- 辛x-1=0( 2sinx+1)(sinx-1)=0

    Solving each factor for x , we get sin x = 1 2 x = 7 π 6 and 11 π 6 and sin x = 1 x = π 2 .
    ::解决 x 的每个因数时, 我们得到sinx= 12x= 76 和 116 和 sinx= 1x 。

    1. Solve tan 2 x 5 tan x 9 = 0 in the interval 0 x < π .
      ::在间距 0 x 中解决 tan2 x- 5tanx- 9= 0 。

    This equation is not factorable so you have to use the Quadratic Formula.
    ::此方程式不可计算, 所以您必须使用二次曲线公式 。

    tan x = 5 ± ( 5 ) 2 4 ( 1 ) ( 9 ) 2 = 5 ± 61 2 6.41   a n d   1.41

    ::x=5(-5)2-4(1)(-(9)2=56126.41和-1.41

    x tan 1 6.41 1.416   rad and x tan 1 1.41 0.954   rad
    ::Xátan-116.411.416 rad和 xtan-1-1-1.410.954 rad

    The first answer is within the range, but the second is not. To adjust -0.954 to be within the range, we need to find the answer in the second quadrant, π 0.954 = 2.186   rad .
    ::第一个答案在范围以内,第二个答案不是。要调整 -0.954 以在范围以内,我们需要在第二个象限中找到答案,= 0.954= 2.186 rad。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find  the possible values for  2 cos 2 x 3 cos x + 1 = 0 .
    ::早些时候, 您被要求找到 2cos2 的值, x- 3cosx+1=0 。

    We can solve this problem by factoring.
    ::我们可以通过保理来解决这个问题。

    2 cos 2 x 3 cos x + 1 = 0 ( 2 cos x 1 ) ( cos x 1 ) = 0 cos x = 1 2 O R x = 1

    ::2cos2_x- 3cos_ x+1=0( 2cos_ x-1)( os_ x-1) =0cos_ x=12ORx=1

    Over the interval 0 x < 2 π , cos x = 1 2 when x = π 3 and cos x = 1 when x = 0 .
    ::时间间隔为 0x < 2, 当 x3 和 osx=1 时, COsx=12 x=0 时 。

    Solve the following trig equations using any method in the interval 0 x < 2 π .
    ::使用间隔 0x<2中的任何方法解决以下三重方程 。

    Example 2
    ::例2

    sin 2 x cos x = cos x
    :sadxcosx=cosxx)

    Put everything onto one side of the equation and factor out a cosine.
    ::把所有东西放在方程的一边 分出一个连弦

    sin 2 x cos x cos x = 0 cos x ( sin 2 x 1 ) = 0 cos x ( sin x 1 ) ( sin x + 1 ) = 0

    ::sin2_x_xx_1(sin_x+1)=0x(sin2_x_1)=0x(sin_x+1)=0x(sin_x+1)=0x(sin_x+1)

    cos x = 0     sin x = 1     sin x = 1 x = π 2   a n d   3 π 2   x = π 2 x = 3 π 2

    ::cosx=0 sinx=1 sinx*1x2 和 32 x2x=32

    Example 3
    ::例3

    sin 2 x = 2 sin ( x ) + 1
    ::sin2\\ xx=2sin}(- x)+1

    Recall that sin ( x ) = sin x from the Negative Angle Identities.
    ::回顾从负角辨别物中得出的sin(-x)sinx(sinx) 。

    sin 2 x = 2 sin ( x ) + 1 sin 2 x = 2 sin x + 1 sin 2 x + 2 sin x + 1 = 0 ( sin x + 1 ) 2 = 0 sin x = 1 x = 3 π 2

    ::sin2\\ xx=2sin}(- x)+1sin2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    Example 4
    ::例4

    4 cos 2 x 2 cos x 1 = 0
    ::4cos2x-2cosx-1=0

    This quadratic is not factorable, so use the quadratic formula.
    ::此二次方程式不可乘以, 所以使用二次方程式 。

    cos x = 2 ± 2 2 4 ( 4 ) ( 1 ) 2 ( 4 ) = 2 ± 20 8 = 1 ± 2 5 4

    ::COsx=222-4(4)(-1)2(4)=2208=1254

    x cos 1 ( 1 + 5 4 ) x cos 1 ( 1 5 4 ) cos 1 0.8090 a n d     cos 1 0.3090 0.6283     1.8850   ( reference angle is   π 1.8850 1.2570 )

    ::Xcos-11(1+54xcos-11(1-54)cos-10.8090和cos-1-0.3090+0.6283)1.8850(参考角为1.8850_1.2570)

    The other solutions in the range are x 2 π 0.6283 5.6549 and x π + 1.2570 4.3982 .
    ::其他的解决方案是 x20.62835.6549 和 x1.25704.3982。

    Review
    ::回顾

    Solve the following trig equations using any method. Find all solutions in the interval 0 x < 2 π . Round any decimal answers to 4 decimal places.
    ::使用任何方法解决以下三重方程 。 在 0. x < 2Q 间距中查找所有解决方案 。 将小数点后的任何答案四舍五入到小数点后四位 。

    1. 2 cos 2 x sin x 1 = 0
      ::2cos2x-sinx-1=0
    2. 4 sin 2 x + 5 sin x + 1 = 0
      ::4sin2x+5sinx+1=0
    3. 3 tan 2 x tan x = 0
      ::3tan2x-tanx=0
    4. 2 cos 2 x + cos ( x ) 1 = 0
      ::2cos2x+cos(- x)- 1=0
    5. 1 sin x = 2 cos x
      ::1 - 辛x=2cosx
    6. sin x = 2 sin x 1
      ::exix=2sinx-1
    7. sin 3 x sin x = 0
      ::sin3 -x -sin*x=0
    8. tan 2 x 8 tan x + 7 = 0
      ::tan2x-8tanx+7=0
    9. 5 cos 2 x + 3 cos x 2 = 0
      ::5cos2x+3cosx-2=0
    10. sin x sin x cos 2 x = 1
      ::excos2\\ x=1 内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内,内
    11. cos 2 x 3 cos x + 2 = 0
      ::COs2%%x- 3cos%x+2=0
    12. sin 2 x cos x = 4 cos x
      :sadxcosx=4cosx)
    13. cos x csc 2 x + 2 cos x = 6 cos x
      ::COSxcsc2x+2cosx=6cosx

    Using your graphing calculator, graph the following equations and determine the points of intersection in the interval 0 x < 2 π .
    ::使用您的图形计算计算器,绘制以下方程式,并确定间距 0x < 2 的交叉点。

    1. y = sin 2 x y = 3 sin x 1

      ::y=sin2xy=3sin*x-1
    1. y = 4 cos x 3 y = 2 tan x

      ::y=4cos_x_3y_2tan_x

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。