Section outline

  • As Agent Trigonometry you are given this clue: sin ( π 2 x ) . How could you simplify this expression to make solving your case easier?
    ::作为Trigonology探员,你得到了这个线索:sin(2-x) 。 你怎么能简化这个表达方式来方便解决你的案子?

    Simplifying Trigonometric Expressions
    ::简化三角数表达式

    We can also use the to simplify trigonometric expressions.
    ::我们还可以利用这些来简化三角表达式。

    The sin a = 3 5 and cos b = 12 13 . a is in the 3 r d quadrant and b is in the 1 s t . Let's find sin ( a + b ) .
    ::罪状35和cosb=1213.a在第三象限,b在第一象限。让我们找出罪状(a+b)。

    First, we need to find cos a and sin b . Using the , missing lengths are 4 and 5, respectively. So, cos a = 4 5 because it is in the 3 r d quadrant and sin b = 5 13 . Now, use the appropriate formulas.
    ::首先,我们需要找到Cosáa 和 sinb。 使用 , 缺失的长度分别为 4 和 5 。 所以, cosa45 因为它位于 3 象限和 sinb= 513 。 现在, 请使用合适的公式 。

    sin ( a + b ) = sin a cos b + cos a sin b = 3 5 12 13 + 4 5 5 13 = 56 65

    :sada+b)=sinacosb+cosasinb351213455135665

    Now, using the information from the previous problem above,  let's find tan ( a + b ) .
    ::现在,使用上面问题的信息, 让我们找到 tan( a+b) 。

    From the cosine and sine of a and b , we know that tan a = 3 4 and tan b = 5 12 .
    ::从a和b的正弦和正弦 我们知道Tana=34和tanb=512

    tan ( a + b ) = tan a + tan b 1 tan a tan b = 3 4 + 5 12 1 3 4 5 12 = 14 12 11 16 = 56 33

    ::tan(a+b) = tana+tanb1 -tanatanatanatanb=34+5121 - 34512=14121116=5633

    Finally, let's simplify cos ( π x ) .
    ::最后,让我们简化一下cos(x)

    Expand this using the difference formula and then simplify.
    ::使用差值公式展开此项, 然后简化 。

    cos ( π x ) = cos π cos x + sin π sin x = 1 cos x + 0 sin x = cos x

    ::================================================================================================================================================= ==================================================================================================================

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to  simplify  sin ( π 2 x ) .
    ::早些时候,有人要求你简化罪(_____________________________)。

    You can expand the expression using the difference formula and then simplify.
    ::您可以使用差异公式扩展表达式,然后简化。

    sin ( π 2 x ) = sin π 2 cos x cos π 2 sin x = 1 cos x 0 sin x = cos x

    :sad% 2 - x) =sin *% 2cos *x -cos *2sin *x=1çcos *x -0Qsin*x=cos*x

    Example 2
    ::例2

    Using the information from the first problem above (where we found sin ( a + b ) ), find cos ( a b ) .
    ::使用上面第一个问题的信息(我们发现 sin(a+b)), 找到cos(a-b) 。


    cos ( a b ) = cos a cos b + sin a sin b = 4 5 12 13 + 3 5 5 13 = 63 65

    :sada-b) =cosçacosb+sinsinb 451213355136365

    Example 3
    ::例3

    Simplify tan ( x + π ) .
    ::简化 tan( x) 。


    tan ( x + π ) = tan x + tan π 1 tan x tan π = tan x + 0 1 tan 0 = tan x

    :sadx) = tanx+tan1 - tanxtan tanx+01 - tan0=tanx

    Review
    ::回顾

    sin a = 8 17 , π a < 3 π 2 and sin b = 1 2 , 3 π 2 b < 2 π . Find the exact trig values of:
    ::查找以下三重值的精确三重值 :

    1. sin ( a + b )
      :sada+b)
    2. cos ( a + b )
      ::COs(a+b)
    3. sin ( a b )
      :sada-b) 歧视(a-b)
    4. tan ( a + b )
      ::tan(a+b)
    5. cos ( a b )
      ::COs(a-b)
    6. tan ( a b )
      ::tan(a-b)

    Simplify the following expressions.
    ::简化下列表达式。

    1. sin ( 2 π x )
      :sad2x)
    2. sin ( π 2 + x )
      :sad% 2+x) (%% 2+x)
    3. cos ( x + π )
      ::COs(x)
    4. cos ( 3 π 2 x )
      ::COs( 3_ 2- x)
    5. tan ( x + 2 π )
      ::tan( x+2)
    6. tan ( x π )
      ::tan(x)
    7. sin ( π 6 x )
      :sad6-x)
    8. tan ( π 4 + x )
      ::tan( 4+x)
    9. cos ( x π 3 )
      ::cos(x3)

    Determine if the following trig statements are true or false.
    ::确定下列三角语句是真实的还是虚假的。

    1. sin ( π x ) = sin ( x π )
      :sadx)=sin(x)
    2. cos ( π x ) = cos ( x π )
      ::cos( x) =cos( x)
    3. tan ( π x ) = tan ( x π )
      ::tan( x) =tan( x) 。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。