14.14 使用总和和差异公式解决细数
Section outline
-
As Agent Trigonometry, you are given a piece of the puzzle: . What is the value of ?
::作为Trigonology探员,你被赋予了拼图的一部分:sin(2-x)1.x值是多少?Solving Trigonometric Functions
::解决三角函数W e can use the to solve trigonometric equations. For this concept, we will only find solutions in the interval .
::我们可以用它来解决三角方程。 对于这个概念, 我们只能在 0.x < 2 间距内找到解决方案 。Solve the function using the sum and difference formulas:
::使用总和和差数公式:cos(x)=22 来解析函数Use the formula to simplify the left-hand side and then solve for .
::使用公式简化左手侧,然后解析 x。
::COS(x) = 22cos xcos sin xsin 22-cosx=22cos x 22The cosine negative in the and quadrants. and .
::第2和第3四舍方的余弦阴性。 x=34和54。Solve the function using the sum and difference formulas:
::使用总和和差数公式来解析函数:sin(x4)+1=sin(4-x)
::=============================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================In the interval, and .
::在间隔内, x=54 和 74。Solve the function using the sum and difference formulas:
::使用总和和差数公式解决函数 : 2sin(x3) =tan3
::2sin(x3) =tan}32(sinxcosos) =32sinx12+2cos2x32=3sinx+3cososxx=3sin3sin2xx=3(1-cosx+cos2x) x=3(1-2cos2x=3-6cosx+3cos2}3+cos%3+3cos2x =2x 替代sin2xx_x0=4cos2}}x_6cosx=20cos2x_x3cos_x3xxxx+1At this point, we can factor the equation to be . , and 1, so . Be careful with these answers. When we check these solutions it turns out that does not work.
::在这一点上,我们可以将方程乘以 (2cosx-1)(cosx-1) = 0. cosx=12, 和 1, 所以 x=0, 3- 5}3. 注意这些答案。 当我们检查这些解决方案时, 结果发现 53 无效 。
::2sin(533333333333333333333333333333333333333333333333333333333333333333333333333Therefore, is an extraneous solution.
::因此,5+3是一个不相干的解决办法。Examples
::实例Example 1
::例1Earlier, you were asked to find the value of x from the equation .
::早些时候,有人要求您从公式sin(% 2- x)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ x的方程式中找到 x的值 。First, simplify the expression as:
::首先,将sin(%2-x)的表达式简化为:
:% 2 - x) =sin *% 2cos *x -cos *2sin *x=1cos *x -0sin*x=cosx
So what you're now looking for is the value of where .
::所以,现在你正在寻找的是 x 的值, 在哪里cosx1 。The cosine of is equal to .
::180的余弦等于-1。Example 2
::例2Solve in the interval
::在间隔 0x<2: cos( 2x) =12 中解决
::coms( 2x) = 12cos @ 2cos @ x+sin @ 2sin @ x= 12cosx= 12x}3 和 53Example 3
::例3Solve in the interval
::在间隔 0x<2: sin( 6- x) +1=sin( x6) 中解决
::\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ -\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Example 4
::例4Solve in the interval
::在间隔 0x<2: cos( 2+x) =tan4 中解决
::COS(% 2+x) = tan4cos2cos2x-sin2sin2sinx=1-sin1x=1sin1sinxx1x=32Review
::回顾Solve the following trig equations in the interval .
::在 0. x < 2 间距内解决以下三角方程式 。-
:x)
-
::cos( 2x) 1 -
::tan( x4)=1 -
:%2-x)=12
-
:x+34)+sin(x-34)=1
-
:x6) sin (x6)
-
::cos(x6)=cos(x6)+1 -
::cos(x3)+cos(x3)=1 -
::tan(x)+2sin(x)=0 -
::tan(x)+cos(x2)=0 -
::tan(x4) =tan(x4) -
:x-53)-(x-23)=0
-
::4sin(x)-2=2cos(x2) -
::1+2cos(x)+cosx=0 -
Real Life Application
The height,
(in feet), of two people in different seats on a Ferris wheel can be modeled by
and
where
is the time (in minutes). When are the two people at the same height?
::身高, h( 以脚为单位), 两人坐在Ferris轮的不同座位上, 可以用 h1 = 50cos3t+46 和 h2 = 50cos3 (t- 34)+46 来模拟。 时间( 分钟) 。 两个人何时在同一高度?
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -