Section outline

  • As Agent Trigonometry, you are given a piece of the puzzle: sin ( π 2 x ) = 1 . What is the value of x ?
    ::作为Trigonology探员,你被赋予了拼图的一部分:sin(2-x)1.x值是多少?

    Solving Trigonometric Functions
    ::解决三角函数

    W e can use the to solve trigonometric equations. For this concept, we will only find solutions in the interval 0 x < 2 π .
    ::我们可以用它来解决三角方程。 对于这个概念, 我们只能在 0.x < 2 间距内找到解决方案 。

    Solve the function using the sum and difference formulas: cos ( x π ) = 2 2
    ::使用总和和差数公式:cos(x)=22 来解析函数

    Use the formula to simplify the left-hand side and then solve for x .
    ::使用公式简化左手侧,然后解析 x。

    cos ( x π ) = 2 2 cos x cos π + sin x sin π = 2 2 cos x = 2 2 cos x = 2 2

    ::COS(x) = 22cos xcos sin xsin 22-cosx=22cos x 22

    The cosine negative in the 2 n d and 3 r d quadrants. x = 3 π 4 and 5 π 4 .
    ::第2和第3四舍方的余弦阴性。 x=34和54。

    Solve the function using the sum and difference formulas: sin ( x + π 4 ) + 1 = sin ( π 4 x )
    ::使用总和和差数公式来解析函数:sin(x4)+1=sin(4-x)

    sin ( x + π 4 ) + 1 = sin ( π 4 x ) sin x cos π 4 + cos x sin π 4 + 1 = sin π 4 cos x cos π 4 sin x sin x 2 2 + cos x 2 2 + 1 = 2 2 . cos x 2 2 sin x 2 sin x = 1 sin x = 1 2 = 2 2

    ::=============================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================

    In the interval, x = 5 π 4 and 7 π 4 .
    ::在间隔内, x=54 和 74。

    Solve the function using the sum and difference formulas: 2 sin ( x + π 3 ) = tan π 3
    ::使用总和和差数公式解决函数 : 2sin(x3) =tan3

    2 sin ( x + π 3 ) = tan π 3 2 ( sin x cos π 3 + cos x sin π 3 ) = 3 2 sin x 1 2 + 2 cos x 3 2 = 3 sin x + 3 cos x = 3 sin x = 3 ( 1 cos x ) sin 2 x = 3 ( 1 2 cos x + cos 2 x ) square both sides 1 cos 2 x = 3 6 cos x + 3 cos 2 x     substitute   sin 2 x = 1 cos 2 x 0 = 4 cos 2 x 6 cos x + 2 0 = 2 cos 2 x 3 cos x + 1

    ::2sin(x3) =tan}32(sinxcosos) =32sinx12+2cos2x32=3sinx+3cososxx=3sin3sin2xx=3(1-cosx+cos2x) x=3(1-2cos2x=3-6cosx+3cos2}3+cos%3+3cos2x =2x 替代sin2xx_x0=4cos2}}x_6cosx=20cos2x_x3cos_x3xxxx+1

    At this point, we can factor the equation to be ( 2 cos x 1 ) ( cos x 1 ) = 0 . cos x = 1 2 , and 1, so x = 0 , π 3 , 5 π 3 . Be careful with these answers. When we check these solutions it turns out that 5 π 3 does not work.
    ::在这一点上,我们可以将方程乘以 (2cosx-1)(cosx-1) = 0. cosx=12, 和 1, 所以 x=0, 3- 5}3. 注意这些答案。 当我们检查这些解决方案时, 结果发现 53 无效 。

    2 sin ( 5 π 3 + π 3 ) = tan π 3 2 sin 2 π = 3 0 3

    ::2sin(533333333333333333333333333333333333333333333333333333333333333333333333333

    Therefore, 5 π 3 is an extraneous solution.
    ::因此,5+3是一个不相干的解决办法。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find the value of x from the  equation  sin ( π 2 x ) = 1
    ::早些时候,有人要求您从公式sin(% 2- x)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ x的方程式中找到 x的值 。

    First, simplify  the expression sin ( π 2 x ) as:
    ::首先,将sin(%2-x)的表达式简化为:

    sin ( π 2 x ) = sin π 2 cos x cos π 2 sin x = 1 cos x 0 sin x = c o s x

    :sad% 2 - x) =sin *% 2cos *x -cos *2sin *x=1cos *x -0sin*x=cosx

    So what you're now looking for is the value of x where cos x = 1 .
    ::所以,现在你正在寻找的是 x 的值, 在哪里cosx1 。

    The cosine of 180 is equal to 1 .
    ::180的余弦等于-1。

    Example 2
    ::例2

    Solve in the interval 0 x < 2 π :   cos ( 2 π x ) = 1 2
    ::在间隔 0x<2: cos( 2x) =12 中解决


    cos ( 2 π x ) = 1 2 cos 2 π cos x + sin 2 π sin x = 1 2 cos x = 1 2 x = π 3   a n d   5 π 3

    ::coms( 2x) = 12cos @ 2cos @ x+sin @ 2sin @ x= 12cosx= 12x}3 和 53

    Example 3
    ::例3

    Solve in the interval 0 x < 2 π :   sin ( π 6 x ) + 1 = sin ( x + π 6 )
    ::在间隔 0x<2: sin( 6- x) +1=sin( x6) 中解决


    sin ( π 6 x ) + 1 = sin ( x + π 6 ) sin π 6 cos x cos π 6 sin x + 1 = sin x cos π 6 + cos x sin π 6 1 2 cos x 3 2 sin x + 1 = 3 2 sin x + 1 2 cos x 1 = 3 sin x 1 3 = sin x x = sin 1 ( 1 3 ) = 0.6155   a n d   2.5261   rad

    ::\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ -\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    Example 4
    ::例4

    Solve in the interval 0 x < 2 π :   cos ( π 2 + x ) = tan π 4
    ::在间隔 0x<2: cos( 2+x) =tan4 中解决


    cos ( π 2 + x ) = tan π 4 cos π 2 cos x sin π 2 sin x = 1 sin x = 1 sin x = 1 x = 3 π 2

    ::COS(% 2+x) = tan4cos2cos2x-sin2sin2sinx=1-sin1x=1sin1sinxx1x=32

    Review
    ::回顾

    Solve the following trig equations in the interval 0 x < 2 π .
    ::在 0. x < 2 间距内解决以下三角方程式 。

    1. sin ( x π ) = 2 2
      :sadx)
    2. cos ( 2 π + x ) = 1
      ::cos( 2x) 1
    3. tan ( x + π 4 ) = 1
      ::tan( x4)=1
    4. sin ( π 2 x ) = 1 2
      :sad%2-x)=12
    5. sin ( x + 3 π 4 ) + sin ( x 3 π 4 ) = 1
      :sadx+34)+sin(x-34)=1
    6. sin ( x + π 6 ) = sin ( x π 6 )
      :sadx6) sin (x6)
    7. cos ( x + π 6 ) = cos ( x π 6 ) + 1
      ::cos(x6)=cos(x6)+1
    8. cos ( x + π 3 ) + cos ( x π 3 ) = 1
      ::cos(x3)+cos(x3)=1
    9. tan ( x + π ) + 2 sin ( x + π ) = 0
      ::tan(x)+2sin(x)=0
    10. tan ( x + π ) + cos ( x + π 2 ) = 0
      ::tan(x)+cos(x2)=0
    11. tan ( x + π 4 ) = tan ( x π 4 )
      ::tan(x4) =tan(x4)
    12. sin ( x 5 π 3 ) sin ( x 2 π 3 ) = 0
      :sadx-53)-(x-23)=0
    13. 4 sin ( x + π ) 2 = 2 cos ( x + π 2 )
      ::4sin(x)-2=2cos(x2)
    14. 1 + 2 cos ( x π ) + cos x = 0
      ::1+2cos(x)+cosx=0
    15. Real Life Application The height, h (in feet), of two people in different seats on a Ferris wheel can be modeled by h 1 = 50 cos 3 t + 46 and h 2 = 50 cos 3 ( t 3 π 4 ) + 46 where t is the time (in minutes). When are the two people at the same height?
      ::身高, h( 以脚为单位), 两人坐在Ferris轮的不同座位上, 可以用 h1 = 50cos3t+46 和 h2 = 50cos3 (t- 34)+46 来模拟。 时间( 分钟) 。 两个人何时在同一高度?

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。