Section outline

  • This is the third in a series of lessons on mathematical proofs. In this lesson we continue to focus mainly on , this time of inequalities, and other kinds of proofs such as proof by geometry.
    ::这是一系列数学证明课程中的第三门课程。 在这一课程中,我们继续主要关注这个不平等的时代,以及其它类型的证据,例如几何证明。

    Induction and Inequalities
    ::上岗和不平等

    The Transitive Property of Inequality
    ::不平等的过境财产

    Below, we will prove several statements about inequalities that rely on the transitive property of inequality:
    ::下面我们将证明若干关于不平等的声明,

    If a < b and b < c , then a < c .
    ::如果a < b和b < c > ,则a < c。

    Note that we could also make such a statement by turning around the relationships (i.e., using “greater than” statements) or by making inclusive statements, such as a b .
    ::请注意,我们也可以通过扭转关系(即使用“大于”的发言)或作出包容性发言,如_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    It is also important to note that this property of integers is a postulate , or a statement that we assume to be true. This means that we need not prove the transitive property of inequality.
    ::还必须指出,这种整数属性是一个假设,或我们假定是真实的陈述,这意味着我们不需要证明不平等的过渡性属性。

    You encountered other useful properties of inequalities in earlier algebra courses:
    ::您在早期代数课程中遇到过不平等的其他有用特性:

    Addition property: if a > b , then a + c > b + c .
    ::添加属性:如果 a > b,则a+ c > b+ c。

    Multiplication property: if a > b , and c > 0 then ac > bc .
    ::乘性属性:如果 a > b, 和 c > 0, 那么 ac > bc。

    Examples
    ::实例

    Example 1
    ::例1

    Prove that n ! 2 n for n 4 .
    ::证明给N! 2n 证明给N. 4.

    Step 1) The base case is n = 4: 4! = 24, 2 4 = 16. 24 ≥ 16 so the base case is true.
    ::步骤1 基数为 n= 4: 4; 4; 24 = 16; 24 = 16, 因此基数是真实的。

    Step 2) Assume that k ! ≥ 2 k for some value of k such that k ≥ 4
    ::第2步 2) 假设k! k! k2k 等于 k, k2k 等于 k, k4

    Step 3) Show that ( k +1)! ≥ 2 k+1
    ::步骤 3 显示 (k+1) !% 2k+1

    ( k +1)! = k !( k +1) Rewrite ( k +1)! in terms of k !
    ≥ 2 k ( k +1) Use step 2 and the multiplication property.
    ≥ 2 k (2) k +1 ≥ 5 >2, so we can use the multiplication property again.
    = 2 k+1  

    Therefore n ! ≥ 2 n for n ≥ 4.
    ::因此,n! 2n = n 4。

    Example 2
    ::例2

    For what values of x is the inequality x > x 2 true?
    ::对于 x 的值, 不平等 x > x2 是真实的吗 ?

    The inequality is true if x is a number between -1 and 1 but not 0.
    ::如果 x 是-1 和 1 之间的数字, 但不是 0 , 不平等是真实的 。

    Example 3
    ::例3

    Prove that 9 n - 1 is divisible by 8 for all positive integers n .
    ::证明所有正整数 n 的 9n - 1 可除以 8 。

    1. Base case: If n = 1, 9 n - 1 = 9-1 = 8 = 8(1)
    2. Inductive hypothesis: Assume that 9 k - 1 is divisible by 8.
    3. Inductive step: Show that 9 k+1 - 1 is divisible by 8.
    9 k - 1 divisible by 8 8 W = (9 k -1) for some integer W
    9 k+1 - 1 = 9(9 k - 1) + 8 = 9(8W) + 8,which is divisible by 8

    Example 4
    ::例4

    Prove that 2 n < n ! for all positive integers n where n 4 .
    ::证明 2n <n! 所有正整数 n 的 nnn4 。

    Use the three steps of proof by induction:
    ::通过上岗培训使用三个证明步骤:

    Step 1) Base Case: 2 4 < 4 !
    ::基本情况:24 < 4!

    2 2 2 2 < 1 2 3 4

    16 < 24 ..... This checks out
    ::16 < 24... .

    Step 2) Assumption: 2 k < k !
    ::步骤2,假设: 2k<k!

    Step 3) Induction Step: starting with 2 k < k ! prove 2 k ( k + 1 ) < k ! ( k + 1 )
    ::步骤3) 上岗步骤: 以 2k < k! 证明 2k( k+1) < k! (k+1)

    2 k ( k + 1 ) < ( k + 1 ) !
    ::2k(k+1) <(k+1)!

    2 < k + 1 ..... If k 4 then this is true
    ::2 <k+1.... 如果 k+4, 那么这是真的

    2 k 2 < 2 k ( k + 1 ) ... Multiply both sides by 2 k
    ::2k2 <2k( k+1)... 将两边乘以 2k

    2 k + 1 < 2 k ( k + 1 )
    ::2k+1 <2k(k+1)

    2 k + 1 < ( k + 1 ) !
    ::2k+1 <(k+1)!

    2 n < n ! for all positive integers n where n 4
    ::*% 2n < n! 所有正数整数 n 的位置 n 4

    Example 5
    ::例5

    Prove that n 2 < 3 n for all integers n > 2 .
    ::对所有整数 n>2 证明 n2 < 3n。

    Use the three steps of proof by induction:
    ::通过上岗培训使用三个证明步骤:

    Step 1) Base Case: (n = 1) 1 2 < 3 1 or, if you prefer, (n = 2) 2 2 < 3 2
    ::基本情况sadn = 1) 12 < 31或(n = 2) 22 < 32

    Step 2) Assumption: k 2 < 3 k
    ::步骤2) 假设: k2<3k

    Step 3) Induction Step: starting with k 2 < 3 k prove ( k + 1 ) 2 < 3 k + 1
    ::步骤3 步骤3 上岗步骤: 从 k2 < 3k 验证( k+1) 2 < 3k+1 开始

    k 2 3 < 3 k 3
    ::k23<3k3

    2 k < k 2 and 1 < k 2 ..... assuming 2 < k as specified in the question
    ::2 k < k2 和 1 k2.... 假设2 kk 如问题中指定的那样

    2 k + 1 < 2 k 2 ..... combine the two statements above
    ::2k+1 <2k2.... 合并上述两个语句

    k 2 + 2 k + 1 < 3 k 2 ..... add k 2 to both sides
    ::k2+2k+1 <3k2..... 在两侧添加 k2

    ( k + 1 ) 2 < 3 k 2
    :sadk+1)2 <3k2

    ( k + 1 ) 2 < 3 3 k ..... from above
    :sadk+1)2 <3__3k....从上方.

    ( k + 1 ) 2 < 3 k + 1
    :sadk+1)2 <3k+1

    n 2 < 3 n for all integers n > 2
    ::n2 <3n 所有整数 n> 2

    Example 6
    ::例6

    Prove that 2 n + 1 < 2 n for all integers n > 3 .
    ::证明所有整数 n>3 2n+1<2n 。

    Use the three steps of proof by induction:
    ::通过上岗培训使用三个证明步骤:

    Step 1) Base case: If n = 3, 2(3) + 1 = 7, 2 3 = 8 : 7 < 8, so the base case is true.
    ::步骤1 基本情况:如果 n = 3, 2(3) + 1 = 7, 23 = 8 : 7 < 8, 因此基本情况属实。

    Step 2) Inductive hypothesis: Assume that 2 k + 1 < 2 k for k > 3
    ::步骤(2) 引言假设:假设2k+1 < 2k/k > 3

    Step 3) Inductive step: Show that 2( k + 1) + 1 < 2 k + 1
    ::步骤3,引导步骤:显示2(k+1)+1 < 2k+1

    2( k + 1) + 1 = 2 k + 2 + 1 = (2k + 1) + 2 < 2 k + 2 < 2 k + 2 k = 2 (2 k ) = 2 k + 1
    ::2(k+1)+1=2k+2+2+1=2k+2+1=2k+1=2k+1)+2 < 2k+2 < 2k+2 < 2k+2k+2k=2(2k)=2k+1

    Review
    ::回顾

    Prove the following inequalities.
    ::证明以下不平等。

    1. 5 k < ( k + 5 ) !
      ::5k <(k+5)!
    2. 1 k < ( k + 1 ) !
      ::1k<(k+1) !
    3. 4 k < ( k + 4 ) !
      ::4k < (k+4) !
    4. 2 k < ( k + 2 ) !
      ::2k <(k+2)!
    5. For what values of x is the inequality x > x 2 true?
      ::对于 x 的值, 不平等 x > x2 是真实的吗 ?
    6. Prove that 3 n > n 2 for all positive integers n .
      ::证明所有正整数 n 的 3n > n2 。

    Prove the following inequalities.
    ::证明以下不平等。

    1. 1 n + 1 + 1 n + 2 + 1 n + 3 + . . . + 1 2 n > 13 24 ( n > 1 )
      ::1n+1+1n+2+1n+3+...+12n>1324(n>1)
    2. 2 n n 2 for n = 4 , 5 , 6 , . . .
      ::N=4,5,6,... 2nn2,n=4,5,6,...
    3. 1 1 2 + 1 2 2 + 1 3 2 + . . . + 1 n 2
      ::112+122+132+...+1n2
    4. Given: x 1 , . . . , x n are positive numbers, prove the following: ( x 1 + . . . + x n ) n ( x 1 . . . x n ) 1 n
      ::给定 : x1,...... xn 是正数, 证明如下 : (x1+...+...+xn) n} (x1...xn) 1n
    5. n ! 3 n for n = 7 , 8 , 9 , . . . .
      ::N$7,8,9,... 3n=7,8,9,9...

    Complete the following geometric induction proofs.
    ::完成以下几何感应证明。

    1. Prove that side length of a quadrilateral is less than the sum of all its other side lengths.
      ::证明四边形的侧长小于其所有其他侧长的总和。
    2. Prove that side length of a pentagon is less than the sum of all its other side lengths.
      ::证明五角形的侧长低于其所有其他侧长的总和。
    3. Prove that it is possible to color all regions of a plane divided by several lines with two different colors, so that any two neighbor regions contain a different color.
      ::证明可以用两种不同颜色将飞机的所有地区除以几条线,使任何两个相邻区域都含有不同的颜色。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。