Section outline

  • Early in this section, we practiced finding . In this lesson we will be using that skill and applying it with the rule of limits that says a function must have the same limit from each side in order to have a single limit.
    ::在本节的早期,我们练习了发现。在这个教训中,我们将使用这种技能,并运用限制规则,规定一个函数必须具有来自每一方的相同限制,才能有一个单一的限制。

    That process allows us to first determine if a function has a limit, and then find the limit if it exists, even if we cannot actually determine the limit directly.
    ::这一过程使我们能够首先确定一个函数是否有限制,然后找到存在的限制,即使我们无法直接实际确定限制。

    Applications of One-Sided Limits
    ::A. 单层限制的适用

    When we wish to find the limit of a function f ( x ) as it approaches a point a and we cannot evaluate f ( x ) at a because it is undefined at that point, we can compute the function's one-sided limits in order to find the desired limit. If its one-sided limits are the same, then the desired limit exists and is the value of the one-sided limits. If its one-sided limits are not the same, then the desired limit does not exist . This technique is used in the examples below.
    ::当我们想在函数f(x)接近一个点时找到函数f(x)的极限,而由于 f(x)当时没有定义,因此无法对f(x)进行评价时,我们可以计算函数的片面限制,以便找到理想的极限。如果其单面限制相同,那么理想的极限就存在,是单面限制的价值。如果其单面限制不同,则没有理想的极限。下面的例子中就使用了这一方法。

    Conditions for a Limit to Exist ( The relationship between one-sided and two-sided limits )
    In order for the limit L of a function to exist, both of the one-sided limits must exist at x 0 and must have the same value. Mathematically,
    lim x x 0 f ( x ) = L if and only if lim x x 0 f ( x ) = L and lim x x 0 + f ( x ) = L .
    The One-Sided Limit
    If f ( x ) approaches L as x approaches x 0 from the left and from the right, then we write
    lim x x 0 + f ( x ) = L
    lim x x 0 f ( x ) = L
    which reads: “the limit of f ( x ) as x approaches x 0 + (or x 0 ) from the right (or left) is L .

    Examples
    ::实例

    Example 1
    ::例1

    Find the limit f ( x ) as x approaches 1. That is, find lim x 1 f ( x ) if
    ::查找限制 f(x) 的 f(x) f 值为x 接近点 。 也就是说, 找到 limx%1f(x) , 如果

      f ( x ) = { 3 x , x < 1 3 x x 2 , x > 1

    Remember that we are not concerned about finding the value of f ( x ) at x but rather near x . So, for x < 1 (limit from the left),
    ::记住我们并不关心在 x 找到 f(x) 值,而是在 nearx 值。 所以, x < 1 (左侧限制),

      lim x 1 f ( x ) = lim x 1 ( 3 x ) = ( 3 1 ) = 2

    and for x > 1 (limit from the right),
    ::和 x > 1 (对权利的限制),

      lim x 1 + f ( x ) = lim x 1 + ( 3 x x 2 ) = 2

    Now since the limit exists and is the same on both sides, it follows that
    ::现在既然双方的限额都存在,而且双方的限额相同,那么,

      lim x 1 f ( x ) = 2

    Example 2
    ::例2

    Find lim x 2 3 x 2 .
    ::查找 limx23x-2 。

    From the figure below we see that f ( x ) = 3 x 2 decreases without bound as x approaches 2 from the left and f ( x ) = 3 x 2 increases without bound as x approaches 2 from the right.
    ::从下图中可以看出,F(x)=3x-2的减少与x方针2从左边和f(x)=3x-2从右边不加约束地增加,而x方针2从右边不受约束。

    This means that lim x 2 3 x 2 = and lim x 2 + 3 x 2 = + . Since f ( x ) is unbounded (infinite) in either directions, the limit does not exist.
    ::这意味着 limx%2 - 3x-2 和 limx%2+3x-2。 由于 f(x) 在两个方向上都没有约束( 无限) , 限制并不存在 。

    Example 3
    ::例3

    For an object in free fall, such as a stone falling off a cliff, the distance y ( t ) (in meters) that the object falls in t seconds is given by the kinematic equation y ( t ) = 4.9 t 2 . The object’s velocity after 2 seconds is given by v ( t ) = lim t 2 y ( t ) y ( 2 ) t 2 .
    ::对于自由坠落的物体,例如从悬崖上掉下来的石头,物体在t秒内坠落的距离 y(t) y(t) = 4.9 t2. 该物体在2秒后的速度由 v(t) =limt2y(t)-y(2)t-2 给出。

    What is the velocity of the object after 2 seconds?
    ::2秒后天体的速度是多少?

    The limit is 19.6 secs. The function can be plotted on a graphing tool, and at 1.999, the graph looks like this:
    ::限制为19.6秒。函数可以在图形工具上绘制,在1.999时,图形看起来是这样的:

    You can see the result of smaller values of t , by adjusting the t slider on the active graph here: .
    ::您可以通过调整活动图中的 t 滑动器来看到 t 较小值的结果 : 。

    Example 4
    ::例4

    Find lim x 0 + ( π ) .
    ::查找 limx=%0+(__) 。

    If a and k are real numbers, then lim x a k = k .
    ::Ifaandkare 真实数字,然后limxQQAK=K。

    lim x 0 + ( π ) = π
    ::=============================================================================================================================== ================================================================================================

    Example 5
    ::例5

    Find lim x 2 x 2 4 x 2 .
    ::查找 limx% 2x2 - 4x- 2 。

    The limit is 4, as shown in the image below. The red line approaches from values above x = 2, and the green line from below. The line is undefined where they meet. This can be examined in greater detail at: .
    ::限制为 4 , 如下图所示。 从 x = 2 上方的值向红线方向, 从下方的绿线方向向下方的值向红线方向。 这条线在它们相遇的地方没有定义。 可以在下列地点进行更详细的检查: 。

    Example 6
    ::例6

    Find lim x 6 x 6 x 2 36 .
    ::查找 limx_6x_6x2_36。

    The limit is 1 12 .
    ::限额为112。

    Interact with the graph here:
    ::与此图交互 :

    or make a table:
    ::或设置表格:

    x
    5
    7
    5.5
    6.5
    f(x)
    1/11
    1/13
    2/23
    2/25

    Example 7
    ::例7

    Find lim x 5 x 3 2 x 1 .
    ::查找 limx=5x3- 2x- 1 。

    The limit is 114 or 10.667 .
    ::限值为114或10.667。

    Interact with the graph here: .
    ::与此图的交互作用 : 。

    Review
    ::回顾

    Based on the graph, determine if a limit exists:
    ::根据图表,确定是否存在限制:

    Determine if a limit exists:
    ::确定是否存在限制 :

    1. lim x 0 4 x 2 x
      ::limx04x2x
    2. g ( x ) = { 2 ; x = 2 3 x + 3 ; x 2
      ::g( x) 2; x2 - 3x+3; x2
    3. lim x 3 x 2 + 9 x 3
      ::limx=3 - x2+9x-3
    4. g ( x ) = { 3 ; x 1 x + 4 ; x < 1
      ::g (x)\\\\\% 3;x\\\\\\1x+4;x\\\1)
    5. lim x 3 4 x 2 15 x + 9 x 3
      ::立方公尺
    6. h ( x ) = { 2 ; x 1 5 x + 2 ; x < 1
      ::h( x) 2; x1 - 5x+2; x1
    7. lim x 1 4 x 2 4 x + 1
      ::limx14x2 - 4x+1
    8. g ( x ) = { 3 ; x > 0 x 3 ; x 0
      ::g( x)\%% 3; x> 0x- 3; x% 0
    9. lim x 4 x 2 + 5 x + 4 x + 4
      ::limx4x2+5x+4x+4
    10. g ( x ) = { 3 x 4 ; x = 3 2 x 1 ; x 3
      ::g (x) 3x- 4;x= 3- 2x- 1;x=3
    11. lim x 4 3 x 2 15 x 12 x + 4
      ::limx*%4 - 3x2 - 15x - 12x+4
    12. g ( x ) = { 4 ; x 3 3 ; x > 3
      ::g( x) 4; x% 33; x3
    13. lim x 2 2 x 2 4 x x 2
      ::立方厘米x22x2-4xx-2
    14. f ( x ) = { 3 ; x = 1 2 ; x 1
      ::f( x)\\\\\ 3; x\\\\ 2; x\\ 1
    15. lim x 3 + 3 x 3 .
      ::立方厘米3+3x-3。
    16. Show that lim x 0 + ( 1 x 1 x 2 ) = .
      ::显示 limx=0+(1x- 1x2)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。