8.9 经常衍生手段和权力规则
章节大纲
-
The power rule is a fantastic "shortcut" for finding the of basic polynomials. Between the power rule and the basic definition of the derivative of a constant, a great number of polynomial derivatives can be identified with little effort - often in your head!
::权力规则是寻找基本多边协议的绝妙的“捷径 ” 。 在权力规则和常数衍生物的基本定义之间,大量多边协议衍生物可以毫不费力地被识别出来 — — 通常在你的脑中!Constant Derivatives and the Power Rule
::经常衍生物和权力规则In this lesson, we will develop formulas and theorems that will calculate derivatives in more efficient and quick ways. Look for these theorems in boxes throughout the lesson.
::在此教训中, 我们将开发公式和定理, 以更高效、 更快捷的方式计算衍生物。 在整个课程中查找框中的这些定理 。The Derivative of a Constant
::常数的衍生因素Theorem: If where c is a constant, then .
::定理 : 如果 f( x) =c 的 c 是常数, 那么 f_( x) =0 。Proof: .
::校对:f_(x)=limh_0f(x+h)-f(x)h=limh_0c-ch=0。Theorem: If is a constant and is differentiable at all , then . In simpler notation The Power Rule
::权力规则Theorem: (The Power Rule) If n is a positive integer, then for all real values of x -
- .
Examples
::实例Example 1
::例1Find for .
::查找 f( x) =16 的 f_( x) 。If for all , then for all .
::如果 f( x) =16 全部 x, 那么 f_( x) =0 全部 x 。We can also write .
::我们还可以写入 ddx16=0 。Example 2
::例2Find the derivative of .
::查找 f( x) =4x3 的衍生物 。..... Restate the function
::ddx[4x3] ......... Apply the commutative law
::4ddx[x3] ....应用通货法..... Apply the power Rule
::4[3x2].应用权力规则..... Simplify
::12x2.... 简化Example 3
::例3Find the derivative of .
::查找 f (x)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\F\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\F\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\F\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\..... Restate
::ddx[- 2x4] .... 重报..... Rules of exponents
::ddx[-2x-4]. 引言人规则..... By the commutative law
::-2dx[x-4].根据通货法..... Apply the power rule
::--2[-4x-4-1] ...。应用权力规则..... Simplify
::--2[-4x-5]. 简化..... Simplify again
::8x-5. 再次简化..... Use rules of exponents
::8x5. 使用指数者的规则Example 4
::例4Find the derivative of .
::查找 f( x) =x 的衍生物 。Special application of the power rule:
::权力规则的特殊适用:
::ddx[x]=1x1 -1=x0=1Example 5
::例5Find the derivative of .
::查找 f( x) =x 的衍生物 。Restate the function:
::复述函数: ddx[x]Using rules of exponents (from algebra):
::使用前言规则( 取自代数) : ddx [x1/ 2]Apply the power rule:
::应用权力规则: 12x1/2- 1Simplify:
::简化: 12x-1/2Rules of exponents:
::规则:12x1/2Simplify:
::简化: 12xExample 6
::例6Find the derivative of .
::查找 f( x) = 1x3 的衍生物 。Restate the function:
::复述函数: ddx[1x3]Rules of exponents:
::引言人规则: ddx[x-3]Power rule:
::权力规则:-3x-3-3-1Simplify:
::简化:- 3x- 4Rules of exponents:
::引言人规则:-3x4Review
::回顾-
State the power rule.
::国家的权力统治。
Find the derivative:
::查找衍生物 :-
::y=5x7 y=5x7 -
::y 3x -
:xx)=13x+43
-
::y=x4 - 2x3 - 5x+10 y=x4 - 2x3 - 5x+10 -
::y=( 5x2- 3) 2 -
Given
, find the derivative when
.
::give y(x) =x- 42, 在 x=1 时找到衍生物 。 -
::y(x)=5 -
Given
, what is
?
::鉴于 u(x) =x-53,什么是 u(2)? -
Given
, what is
?
::鉴于d(x)=x-0.37,什么是d(1)? -
::g(x)=x-3 -
::u(x)=x0.096 -
:xx)=x-0.49
-
::y=x - 5=3
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -