2.8 理性功能零
Section outline
-
The zeroes of a function are the collection of values where the height of the function is zero. How do you find these values for a rational function and what happens if the zero turns out to be a hole ?
::函数的零是函数高度为零的 x 值的集合。如何找到这些值用于理性函数,如果零是一个洞,会发生什么情况?Finding Zeroes of Rational Functions
::寻找理性函数的零Zeroes are also known as - intercepts , solutions or roots of functions. They are the values where the height of the function is zero. For rational functions, you need to set the numerator of the function equal to zero and solve for the possible values. If a hole occurs on the value, then it is not considered a zero because the function is not truly defined at that point.
::零点也被称为函数的 X 界面、 解决方案或根根。它们是函数高度为零的 x 值。对于理性函数,您需要将函数的分子设为零,并解决可能的 x 值。如果在 x 值上出现一个洞,那么它不被视为零,因为函数当时没有真正定义。Take the following rational function:
::采取以下合理功能:
::f(x) =(x- 1)(x+3)(x+3) x+3Notice how one of the factors seems to cancel and indicate a removable discontinuity. Even though there are two factors, the only zero occurs at and the hole occurs at (-3, 0).
::提醒 x+3 系数之一似乎取消并显示可移动的不连续性。 即使有两个 x+3 系数, 唯一的零出现在 x=1 时, 洞出现在 (3, 0) 时 。Watch the video below and focus on the portion of this video discussing holes and -intercepts.
::看下面的录像, 并关注这段影片中讨论洞和 X 界面的部分。Examples
::实例Example 1
::例1Earlier, you were asked how to find the zeroes of a rational function and what happens if the zero is a hole. To find the zeroes of a rational function, set the numerator equal to zero and solve for the values. When a hole and a zero occur at the same point, the hole wins and there is no zero at that point.
::早些时候, 有人询问您如何找到一个理性函数的零, 如果零是一个洞, 以及会发生什么。 要找到一个理性函数的零, 请将分子设置为零, 并解决 x 值。 当一个洞和一个零在同一点发生时, 洞会赢, 而那个点没有零 。Example 2
::例2Create a function with zeroes at and holes at .
::创建一个在 x=1,2,3 和 x=0,4 上为零的函数。There are an infinite number of possible functions that fit this description because the function can be multiplied by any constant . One possible function could be:
::由于函数可以乘以任何常数,因此可以有无限数量的功能适合本描述,因为函数可以乘以任何常数。 一种可能的功能可以是:
:xx) = (x- 1) (x-2) (x-3)x(x-4)x(x-4)x(x-4)x(x-4)
Note that 0 and 4 are holes because they cancel out.
::请注意 0 和 4 是空洞, 因为它们取消 。Example 3
::例3Identify the zeroes, holes and intercepts of the following rational function without graphing.
::识别下列理性函数的零、空洞和截取 Y ,不显示图形。
:xx) =xx(x- 2)(x-1)(x-1)(x+1)(x+1)(x+1)(x+2)(x-1)(x+1)
The holes occur at . To get the exact points, these values must be substituted into the function with the factors canceled.
::空洞在 x1 1 处发生。 要获得精确点, 这些值必须替换为因子取消的函数 。
::f( x) =xx( x-2) (x+1) (x+2) f( - 1) =0, f(1) 6The holes are (-1, 0); (1, 6). The zeroes occur at . The zero that is supposed to occur at has already been demonstrated to be a hole instead.
::空洞是(-1,0,0,1,6),零为x=0,2,-2。 假定在x1产生的零已被证明是一个空洞。Example 4
::例4Identify the intercepts, holes, and zeroes of the following rational function.
::识别以下理性函数的 y 拦截、 孔和零。
:x) = 6x3 - 7x2 - x+2x-1
After noticing that a possible hole occurs at and using polynomial long division on the numerator you should get:
::注意到在 x=1 时可能出现洞, 并在分子上使用多数值长的分隔符后, 您应该得到 :
:xx) = (6x2-x-2) =x-1-1
A hole occurs at which turns out to be the point (1, 3) because .
::x=1 发生洞口,因为 612 - 1-2=3 点( 1, 3) 。The - intercept always occurs where which turns out to be the point (0, -2) because .
::y 界面总是在 x=0 点( 0, 2) 因为 f( 0) @% 2 而成为点( 0) 。To find the -intercepts you need to factor the remaining part of the function:
::要找到 X 界面, 您需要将函数的剩余部分乘以 :
:2x+1)(3x-2)
Thus the zeroes ( -intercepts) are .
::因此,零是 x12,23。Example 5
::例5Identify the zeroes and holes of the following rational function.
::识别以下合理函数的零和空洞。
::f( x) = 2( x+1)( x+1)( x+1)( x+1)( x+1)( x+1)( x+1) = 2( x+1)The hole occurs at which turns out to be a double zero. The hole still wins so the point (-1, 0) is a hole. There are no zeroes. The constant 2 in front of the numerator and the denominator serves to illustrate the fact that constant scalars do not impact the values of either the zeroes or holes of a function.
::洞在 x% 1 处发生, 结果显示为为 双零 。 洞仍然赢, 点( 1- 0) 是一个洞。 没有零。 分子和分母前面的常数 2 和 分母可以说明, 恒定的星标不会影响函数零或空洞的 x 值 。Summary -
Zeroes
of a function are the values where the height of the function is zero, also known as x-intercepts, solutions, or roots.
::函数的零是函数高度为零的值,也称为 X 界面、 解决方案或根。 -
To find zeroes of rational functions, set the numerator of the function equal to zero and solve for the possible
values.
::要找到理性函数的零,请将函数的分子数设为零,并解决可能的 x 值。 -
Removable discontinuities may occur in rational functions when factors cancel out, indicating a hole.
::当因数取消时,在理性功能中可能会出现可消除的不连续性,这表明存在一个洞。
Review
::回顾Identify the intercepts and holes of each of the following rational functions.
::识别以下每个合理功能的拦截和孔。-
:xx) =x3+x2-10x+8x-2
-
::g (x) = 6x3- 17x2- 5x+6x- 3 -
::h(x) = (x+2) 1-x) x-1 -
::j(x) = (x- 4)(x+2)(x+2) x+2 -
:xx)=xx(x-3)(x-4)(x-4)(x+4)(x+4)(x+4)(x+2)(x-3)(x+4)
-
:xx) =xx(xx+1)(x+1)(x1)(x-1)(x-1)(x-1)(x+1)(x+1)
-
::g (x) =x3 - x2 - x+1x2 - 1 -
::h(x)=4-x2x-2 -
Create a function with holes at
and zeroes at
.
::创建 x=3,5,9和0的x=1,2的空洞函数。 -
Create a function with holes at
and zeroes at
.
::创建一个函数,在 x\\\\ 1, 4 和 x= 1 时为零, 以洞洞创建函数 。 -
Create a function with holes at
and zeroes at
.
::创建一个函数,在 x=0, 5 和 x=2, 2 时为零, 以 x=0, 5 和 零为空。 -
Create a function with holes at
and zeroes at
.
::在 x=4 时创建有 x%3-5 和 零的空洞的函数 。 -
Create a function with holes at
and zeroes at
.
::创建一个函数,在 x=0. 3 时以 x% 2, 6 和 零为空格创建空洞。 -
Create a function with holes at
and zeroes at
.
::创建一个函数,在 x=1, 5 和 x=0, 6 上以空洞创建空洞 。 -
Create a function with holes at
and zeroes at
.
::创建一个函数,在 x=2,7 和 x=3 时有空洞。
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
Zeroes
of a function are the values where the height of the function is zero, also known as x-intercepts, solutions, or roots.