Section outline

  • The zeroes of a function are the collection of  x values where the height of the function is zero.  How do you find these values for a rational function and what happens if the zero turns out to be a hole
    ::函数的零是函数高度为零的 x 值的集合。如何找到这些值用于理性函数,如果零是一个洞,会发生什么情况?

    Finding Zeroes of Rational Functions
    ::寻找理性函数的零

    Zeroes are also known as x - intercepts , solutions or roots of functions.  They are the x  values where the height of the function is zero.  For rational functions, you need to set the numerator of the function equal to zero and solve for the possible  x values.  If a hole occurs on the x  value, then it is not considered a zero because the function is not truly defined at that point. 
    ::零点也被称为函数的 X 界面、 解决方案或根根。它们是函数高度为零的 x 值。对于理性函数,您需要将函数的分子设为零,并解决可能的 x 值。如果在 x 值上出现一个洞,那么它不被视为零,因为函数当时没有真正定义。

    Take the following rational function:
    ::采取以下合理功能:

    f ( x ) = ( x 1 ) ( x + 3 ) ( x + 3 ) x + 3
    ::f(x) =(x- 1)(x+3)(x+3) x+3

    Notice how one of the x + 3  factors seems to cancel and indicate a removable discontinuity.  Even though there are two  x + 3 factors, the only zero occurs at x = 1  and the hole occurs at (-3, 0).
    ::提醒 x+3 系数之一似乎取消并显示可移动的不连续性。 即使有两个 x+3 系数, 唯一的零出现在 x=1 时, 洞出现在 (3, 0) 时 。

    lesson content

    Watch the video below and focus on the portion of this video discussing holes and x -intercepts.
    ::看下面的录像, 并关注这段影片中讨论洞和 X 界面的部分。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked how to find the zeroes of a rational function and what happens if the zero is a hole. To find the zeroes of a rational function, set the numerator equal to zero and solve for the  x  values. When a hole and a zero occur at the same point, the hole wins and there is no zero at that point. 
    ::早些时候, 有人询问您如何找到一个理性函数的零, 如果零是一个洞, 以及会发生什么。 要找到一个理性函数的零, 请将分子设置为零, 并解决 x 值。 当一个洞和一个零在同一点发生时, 洞会赢, 而那个点没有零 。

    Example 2
    ::例2

    Create a function with zeroes at x = 1 , 2 , 3  and holes at x = 0 , 4
    ::创建一个在 x=1,2,3 和 x=0,4 上为零的函数。

    There are an infinite number of possible functions that fit this description because the function can be multiplied by any constant .  One possible function could be:
    ::由于函数可以乘以任何常数,因此可以有无限数量的功能适合本描述,因为函数可以乘以任何常数。 一种可能的功能可以是:

    f ( x ) = ( x 1 ) ( x 2 ) ( x 3 ) x ( x 4 ) x ( x 4 )
    :sadxx) = (x- 1) (x-2) (x-3)x(x-4)x(x-4)x(x-4)x(x-4)

    Note that 0 and 4 are holes because they cancel out.
    ::请注意 0 和 4 是空洞, 因为它们取消 。

    Example 3
    ::例3

    Identify the zeroes, holes and  y intercepts of the following rational function without graphing. 
    ::识别下列理性函数的零、空洞和截取 Y ,不显示图形。

    f ( x ) = x ( x 2 ) ( x 1 ) ( x + 1 ) ( x + 1 ) ( x + 2 ) ( x 1 ) ( x + 1 )
    :sadxx) =xx(x- 2)(x-1)(x-1)(x+1)(x+1)(x+1)(x+2)(x-1)(x+1)

    The holes occur at x = 1 , 1 .  To get the exact points, these values must be substituted into the function with the factors canceled.
    ::空洞在 x1 1 处发生。 要获得精确点, 这些值必须替换为因子取消的函数 。

    f ( x ) = x ( x 2 ) ( x + 1 ) ( x + 2 ) f ( 1 ) = 0 , f ( 1 ) = 6

    ::f( x) =xx( x-2) (x+1) (x+2) f( - 1) =0, f(1) 6

    The holes are (-1, 0); (1, 6).  The zeroes occur at x = 0 , 2 , 2 .  The zero that is supposed to occur at x = 1  has already been demonstrated to be a hole instead. 
    ::空洞是(-1,0,0,1,6),零为x=0,2,-2。 假定在x1产生的零已被证明是一个空洞。

    Example 4
    ::例4

    Identify the  y intercepts, holes, and zeroes of the following rational function. 
    ::识别以下理性函数的 y 拦截、 孔和零。

    f ( x ) = 6 x 3 7 x 2 x + 2 x 1
    :sadx) = 6x3 - 7x2 - x+2x-1

    After noticing that a possible hole occurs at x = 1  and using polynomial long division on the numerator you should get:
    ::注意到在 x=1 时可能出现洞, 并在分子上使用多数值长的分隔符后, 您应该得到 :

    f ( x ) = ( 6 x 2 x 2 ) x 1 x 1
    :sadxx) = (6x2-x-2) =x-1-1

    A hole occurs at x = 1  which turns out to be the point (1, 3) because 6 1 2 1 2 = 3
    ::x=1 发生洞口,因为 612 - 1-2=3 点( 1, 3) 。

    The y - intercept always occurs where x = 0  which turns out to be the point (0, -2) because f ( 0 ) = 2 .
    ::y 界面总是在 x=0 点( 0, 2) 因为 f( 0) @% 2 而成为点( 0) 。

    To find the x -intercepts you need to factor the remaining part of the function:
    ::要找到 X 界面, 您需要将函数的剩余部分乘以 :

    ( 2 x + 1 ) ( 3 x 2 )
    :sad2x+1)(3x-2)

    Thus the zeroes ( x -intercepts) are x = 1 2 , 2 3 .
    ::因此,零是 x12,23。

    Example 5
    ::例5

    Identify the zeroes and holes of the following rational function. 
    ::识别以下合理函数的零和空洞。

    f ( x ) = 2 ( x + 1 ) ( x + 1 ) ( x + 1 ) 2 ( x + 1 )
    ::f( x) = 2( x+1)( x+1)( x+1)( x+1)( x+1)( x+1)( x+1) = 2( x+1)

    The hole occurs at x = 1  which turns out to be a double zero.  The hole still wins so the point (-1, 0) is a hole.  There are no zeroes.  The constant 2 in front of the numerator and the denominator serves to illustrate the fact that constant scalars do not impact the  x values of either the zeroes or holes of a function. 
    ::洞在 x% 1 处发生, 结果显示为为 双零 。 洞仍然赢, 点( 1- 0) 是一个洞。 没有零。 分子和分母前面的常数 2 和 分母可以说明, 恒定的星标不会影响函数零或空洞的 x 值 。

      Summary
    • Zeroes of a function are the values where the height of the function is zero, also known as x-intercepts, solutions, or roots.
      ::函数的零是函数高度为零的值,也称为 X 界面、 解决方案或根。
    • To find zeroes of rational functions, set the numerator of the function equal to zero and solve for the possible x  values.
      ::要找到理性函数的零,请将函数的分子数设为零,并解决可能的 x 值。
    • Removable discontinuities may occur in rational functions when factors cancel out, indicating a hole.
      ::当因数取消时,在理性功能中可能会出现可消除的不连续性,这表明存在一个洞。

    Review
    ::回顾

    Identify the intercepts and holes of each of the following rational functions.
    ::识别以下每个合理功能的拦截和孔。

    1. f ( x ) = x 3 + x 2 10 x + 8 x 2
      :sadxx) =x3+x2-10x+8x-2
    2. g ( x ) = 6 x 3 17 x 2 5 x + 6 x 3
      ::g (x) = 6x3- 17x2- 5x+6x- 3
    3. h ( x ) = ( x + 2 ) ( 1 x ) x 1
      ::h(x) = (x+2) 1-x) x-1
    4. j ( x ) = ( x 4 ) ( x + 2 ) ( x + 2 ) x + 2
      ::j(x) = (x- 4)(x+2)(x+2) x+2
    5. k ( x ) = x ( x 3 ) ( x 4 ) ( x + 4 ) ( x + 4 ) ( x + 2 ) ( x 3 ) ( x + 4 )
      :sadxx)=xx(x-3)(x-4)(x-4)(x+4)(x+4)(x+4)(x+2)(x-3)(x+4)
    6. f ( x ) = x ( x + 1 ) ( x + 1 ) ( x 1 ) ( x 1 ) ( x + 1 )
      :sadxx) =xx(xx+1)(x+1)(x1)(x-1)(x-1)(x-1)(x+1)(x+1)
    7. g ( x ) = x 3 x 2 x + 1 x 2 1
      ::g (x) =x3 - x2 - x+1x2 - 1
    8. h ( x ) = 4 x 2 x 2
      ::h(x)=4-x2x-2
    9. Create a function with holes at x = 3 , 5 , 9  and zeroes at x = 1 , 2 .
      ::创建 x=3,5,9和0的x=1,2的空洞函数。
    10. Create a function with holes at x = 1 , 4  and zeroes at x = 1
      ::创建一个函数,在 x\\\\ 1, 4 和 x= 1 时为零, 以洞洞创建函数 。
    11. Create a function with holes at x = 0 , 5  and zeroes at x = 2 , 3 .
      ::创建一个函数,在 x=0, 5 和 x=2, 2 时为零, 以 x=0, 5 和 零为空。
    12. Create a function with holes at x = 3 , 5  and zeroes at x = 4
      ::在 x=4 时创建有 x%3-5 和 零的空洞的函数 。
    13. Create a function with holes at x = 2 , 6  and zeroes at x = 0 , 3 .
      ::创建一个函数,在 x=0. 3 时以 x% 2, 6 和 零为空格创建空洞。
    14. Create a function with holes at x = 1 , 5  and zeroes at x = 0 , 6 .
      ::创建一个函数,在 x=1, 5 和 x=0, 6 上以空洞创建空洞 。
    15. Create a function with holes at x = 2 , 7  and zeroes at x = 3 .
      ::创建一个函数,在 x=2,7 和 x=3 时有空洞。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。