4.5 科斯定律
Section outline
-
The is a generalized that allows you to solve for the missing sides and angles of a triangle even if it is not a right triangle. Suppose you have a triangle with sides 11, 12 and 13. What is the measure of the angle opposite the 11?
::它可以让您解析三角形的缺失边和角度, 即使它不是一个正确的三角形。 假设您有一个三角形, 包括侧面 11、 12 和 13 。 对角的度量是多少 ?The Law of Cosines
::科庭法The Law of Cosines is:
::科辛斯定律是:c 2 = a 2 + b 2 − 2 a b ⋅ cos C
::c2=a2+b2-2-2abcosCIt is important to understand the proof:
::重要的是要了解证据:You know four facts from the picture:
::你从照片中知道四个事实:a = a 1 + a 2 ( 1 )
::a=a1+a2(1)b 2 = a 2 1 + h 2 ( 2 )
::b2=a21+h2(2)c 2 = a 2 2 + h 2 ( 3 )
::c2=a22+h2(3)cos C = a 1 b ( 4 )
::COSC=a1b(4)Once you verify for yourself that you agree with each of these facts, check algebraically that these next two facts must be true.
::一旦你证实你同意了这些事实 就能用代数来证明接下来的这两个事实 一定是真实的a 2 = a − a 1 ( 5 , from 1 )
::a2=a-a1 (5个,从1个开始)a 1 = b ⋅ cos C ( 6 , from 4 )
::a1=bcosC( 6, 从 4 起 )Now the Law of Cosines is ready to be proved using substitution, FOIL , more substitution and rewriting to get the order of terms right.
::现在《科辛斯定律》 已经准备好被证明 使用替代,FIL, 更多的替代和改写 来获得正确的术语顺序。c 2 = a 2 2 + h 2 ( 3 again ) c 2 = ( a − a 1 ) 2 + h 2 ( substitute using 5 ) c 2 = a 2 − 2 a ⋅ a 1 + a 2 1 + h 2 ( FOIL ) c 2 = a 2 − 2 a ⋅ b ⋅ cos C + a 2 1 + h 2 ( substitute using 6 ) c 2 = a 2 − 2 a ⋅ b ⋅ cos C + b 2 ( substitute using 2 ) c 2 = a 2 + b 2 − 2 a b ⋅ cos C ( rearrange terms )
::c2=a2=a22+h2(3)c2=(a-a1)2+h2(使用5)c2=a2=a2-2a1+a21+h2(FOIL)c2=a2-2abcosC+a21+h2(使用6c2=a2-2a2-bcosC+b2(使用2)c2=a2=a2+b2-2ab=csC(变换条件)的替代品There are only two types of problems in which it is appropriate to use the Law of Cosines. The first is when you are given all three sides of a triangle and asked to find an unknown angle. This is called SSS (side-side-side) in geometry. The second situation where you will use the Law of Cosines is when you are given two sides and the included angle and you need to find the third side. This is called SAS (side-angle-side).
::只有两种类型的问题适合使用《科辛定律》。 第一种是给三角形所有三边的人一个未知角度。 这在几何中被称为SSS(侧面), 第二种情况下, 你将使用科辛定律, 第二种情况是给您两个侧面, 包括的角度, 您需要找到第三个侧面。 这被称为 SAS( 侧面) 。Take the following triangle.
::采取以下三角形。The measure of angle D is missing and can be found using the Law of Cosines. It is necessary to set up the Law of Cosines equation very carefully with D corresponding to the opposite side of 230. The letters are not A B C like in the proof, but those letters can always be changed to match the problem as long as the angle in the cosine corresponds to the side used in the left side of the equation.
::角度D 的度量缺失, 可用 Cosines 定律找到 。 有必要非常小心地将 Cisine 定律方程式设置为 D 方程式, 与 230 的对面相对应 。 字母不是 ABC , 与 证据 中 的 ABC 不同, 但是这些字母总是可以更改来匹配问题, 只要 cosine 的角与 公式左侧 的对应 。c 2 = a 2 + b 2 − 2 a b ⋅ cos C 230 2 = 120 2 + 150 2 − 2 ⋅ 120 ⋅ 150 ⋅ cos D 230 2 − 120 2 − 150 2 = − 2 ⋅ 120 ⋅ 150 ⋅ cos D 230 2 − 120 2 − 150 2 − 2 ⋅ 120 ⋅ 150 = cos D D = cos − 1 ( 230 2 − 120 2 − 150 2 − 2 ⋅ 120 ⋅ 150 ) ≈ 116.4 ∘ ≈ 2.03 r a d i a n s
::c2=a2+b2-2-2abcos C2302=1202+1502-2N2-1202-1202-1202-1202-11202-11502*21202-1202-1502}150/cosDDDDD=12002-1202-1202-1202-1201-150}=cosDDD=cos-1(2302-1202-1202-1202-1201-150)116.42.03 弧度Examples
::实例Example 1
::例1Earlier, you were given a triangle with sides 11, 12, and 13 and asked what the measure of the angle opposite 11 is. A triangle that has sides 11, 12 and 13 is not going to be a right triangle. In order to solve for the missing angle you need to use the Law of Cosines because this is a SSS situation.
::早些时候, 您得到了一个三角形, 侧面 11 、 12 和 13 , 并询问对面 11 角度的度量是多少 。 有 面 11 、 12 和 13 的三角形不会是右三角形 。 为了解决缺失的角, 您需要使用 Cosines 定律, 因为这是一个 SSS 状态 。c 2 = a 2 + b 2 − 2 a b ⋅ cos C 11 2 = 12 2 + ( 13 ) 2 − 2 ⋅ 12 ⋅ 13 ⋅ cos C C = cos − 1 ( 11 2 − 12 2 − 13 2 − 2 ⋅ 12 ⋅ 13 ) ≈ 52.02 ∘
::c2=a2+b2-2abcosC112=122+(13)2-2-21213cosCC=cos-1(1(112-122-132-21213)_52.02Example 2
::例2Determine the length of side p .
::确定p的侧边长度。c 2 = a 2 + b 2 − 2 a b ⋅ cos C p 2 = 212 2 + 388 2 − 2 ⋅ 212 ⋅ 388 ⋅ cos 82 ∘ p 2 ≈ 172592.354815 p ≈ 415.44
::c2=a2+b2-2abcosCp2=2122+3882-2212-212-388cos82p2_172592.354815p415.44Example 3
::例3Determine the degree measure of angle N .
::确定角N的度量。This problem must be done in two parts. First apply the Law of Cosines to determine the length of side m . This is a SAS situation like Example B. Once you have all three sides you will be in the SSS situation like in Example A and can apply the Law of Cosines again to find the unknown angle N .
::这个问题必须分两部分解决。 首先, 应用科辛斯定律来确定边长。 这是像例B那样的SAS情况。 一旦你具备了所有三面, 你就会像例A那样处于SSS 情况中, 并且可以再次应用科辛斯定律来寻找未知角度 N 。c 2 = a 2 + b 2 − 2 a b ⋅ cos C m 2 = 38 2 + 40 2 − 2 ⋅ 38 ⋅ 40 ⋅ cos 93 ∘ m 2 ≈ 3203.1 m ≈ 56.59
::c2=a2+b2-2abcos Cm2=382+402-2}23840cos93m23203立方厘米56.59Now that you have all three sides you can apply the Law of Cosines again to find the unknown angle N . Remember to match angle N with the corresponding side length of 38 inches. It is also best to store m into your calculator and use the unrounded number in your future calculations.
::现在,你拥有所有三个侧面, 您可以再次应用“ 科辛斯定律” 来找到未知角度 N。 记住要将角 N 匹配相应的侧长为 38 英寸。 最好还是将 m 储存在您的计算器中, 并在未来的计算中使用无舍入的数字 。c 2 = a 2 + b 2 − 2 a b ⋅ cos C 38 2 = 40 2 + ( 56.59 ) 2 − 2 ⋅ 40 ⋅ ( 56.59 ) ⋅ cos N 38 2 − 40 2 − ( 56.59 ) 2 = − 2 ⋅ 40 ⋅ ( 56.59 ) ⋅ cos N 38 2 − 40 2 − ( 56.59 ) 2 − 2 ⋅ 40 ⋅ ( 56.59 ) = cos N N = cos − 1 ( 38 2 − 40 2 − ( 56.59 ) 2 − 2 ⋅ 40 ⋅ ( 56.59 ) ) ≈ 42.1 ∘
::c2=a2+b2-2-2abcosC382=402+(56.592)-240(56.592)-(56.592)-(56.592)-(25.592)-(56.595)-(58.59)2-(28.402-(56.59)=(382-402)-(56.592)-(25.592)-(25.59)-(45.59)-(42.1)-(42.1)-(382-402-(56.59)-(56.59)For the next two examples, use the triangle below.
::接下来的两个例子,请使用下面的三角形。Example 4
::例4Determine the length of side r .
::确定侧 r 的长度。r 2 = 36 2 + 42 2 − 2 ⋅ 36 ⋅ 42 ⋅ cos 63
::r2=362+422-23642cos63r ≈ 41.07
::r41.07Example 5
::例5Determine the measure of angle T in degrees.
::确定角度 T 的度量。36 2 = ( 41.07 ) 2 + 42 2 − 2 ⋅ ( 41.07 ) ⋅ 42 ⋅ cos T
::362=(41.072+422-2(41.07)_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________T ≈ 51.34 ∘
::51.34Summary -
The Law of Cosines
is an extension of the Pythagorean Theorem and can be used to find missing sides and angles in any type of triangle.
c 2 = a 2 + b 2 − 2 a b ⋅ cos ( C )
::科辛斯定律是毕达哥里安理论的延伸,可用于在任何类型的三角形中查找缺失的侧面和角度。 c2=a2+b2-2abcos(C)
Review
::回顾For all problems, find angles in degrees rounded to one decimal place.
::对于所有问题,都以四舍五入到小数点后一位位的度查找角度。In Δ A B C , a = 12 , b = 15 , and c = 20 .
::ABC中,a=12,b=15,c=20。1. Find the measure of angle A .
::1. 找出角度A的量度。2. Find the measure of angle B .
::2. 寻找角度B的量度。3. Find the measure of angle C .
::3. 寻找角度C的量度。4. Find the measure of angle C in a different way.
::4. 以不同方式找到角度C的量度。In Δ D E F , d = 20 , e = 10 , and f = 16 .
::在“DEF,d=20,e=10,f=16”中。5. Find the measure of angle D .
::5. 寻找角度D的量度。6. Find the measure of angle E .
::6. 寻找角度E的量度。7. Find the measure of angle F .
::7. 寻找角度F的量度。In Δ G H I , g = 19 , ∠ H = 55 ∘ , and i = 12 .
::GHI,g=19,H=55,i=12。8. Find the length of h .
::8. 查找h的长度。9. Find the measure of angle G .
::9. 寻找角度G的量度。10. Find the measure of angle I .
::10. 找出角度I的量度。11. Explain why the Law of Cosines is connected to the Pythagorean Theorem.
::11. 解释为什么《科辛斯法》与《毕达哥里安神话》有关。12. What are the two types of problems where you might use the Law of Cosines?
::12. 你可能使用《科辛斯定律》的两种问题是什么?Use the Law of Cosines to determine whether or not each triangle is possible.
::使用科辛斯定律来确定每个三角形是否可行。13. a = 5 , b = 6 , c = 15
::13.a=5,b=6,c=1514. a = 1 , b = 5 , c = 4
::14.a=1,b=5,c=415. a = 5 , b = 6 , c = 10
::15.a=5,b=6,c=10Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
The Law of Cosines
is an extension of the Pythagorean Theorem and can be used to find missing sides and angles in any type of triangle.