Section outline

  • From geometry you already know that the area of a triangle is 1 2 b h .
    ::从几何学上你已经知道 三角形的面积是12bh

    What if you are given the sides of a triangle are 5 and 6 and the angle between the sides is π 3 ? You are not directly given the height, but can you still figure out the area of the triangle?
    ::如果三角形的两边是5和6,而两边的角是++3呢?您不是直接给定高度的,但您仍能找出三角形的区域吗?

    Finding the Area of Triangles
    ::寻找三角区域

    The sine function allows you to find the height of any triangle and substitute that value into the familiar triangle area formula. 
    ::正弦函数允许您找到任何三角形的高度,并将该值替换为熟悉的三角形区域公式。

    lesson content

    Using the sine function, you can isolate h  for height:
    ::使用正弦函数,您可以将 h 分离为高度:

    sin C = h a a sin C = h

    ::C=h=h=h=h=h=h=h=h=h=h=h=h=h=h=h=h=h

    Substituting into the area formula:
    ::替代区域公式:

    A r e a = 1 2 b h A r e a = 1 2 b a sin C A r e a = 1 2 a b sin C

    ::区域=12bhArea=12basin 区域=12aabsinc

    Recall that the variables used to note the sides and corresponding angles are arbitrary, so long as a side and its opposing angle share the same variable (side c  has an opposing angle C ). If you were given  Δ A B C with A = 22 , b = 6 , c = 7  and asked to find the area, you would use the formula:

    A r e a = 1 2 b c sin A A r e a = 1 2 6 7 sin 22 7.86   u n i t s 2

    ::提醒注意侧边和相应角度所使用的变量是任意的,只要侧面及其对角有相同的变量(侧面c有一个对角C)。如果给您提供 ABC 和 A=22,b=6,c=7 并被要求找到区域,您将使用公式:Area=12bcsinAAAAAREa=12_677sin227.862 单位。

    The important part is that neither given side corresponds to the given angle.
    ::重要部分是,给定的一方与给定角度都不对应。

    Bonus Video: There is another way of finding the area of a triangle, . This will be discussed in Example 5. Heron's formula is used when three side lengths are given.
    ::Bonus Video: 找到三角形区域还有另一种方法, 将在例5中讨论。 当给定三个侧边长度时, 使用Heron的公式 。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were given the sides of a triangle are 5 and 6 and the angle between the sides is θ = π 3  and asked to find the area.
    ::早些时候,你被分配到一个三角形的两边是5和6, 而两边的角是3, 并被要求找到这个区域。

    lesson content

    A r e a = 1 2 5 6 sin π 3 12.99   u n i t s 2
    ::面积=12 5 6 sin 3 12.99 单位2

    Example 2
    ::例2

    Given  Δ X Y Z has area 28 square inches, what is the angle included between side length 8 and 9?
    ::鉴于XYZ的面积为28平方英寸,侧长8和9之间的角是多少?

    A r e a = 1 2 a b sin C 28 = 1 2 8 9 sin C sin C = 28 2 8 9 C = sin 1 ( 28 2 8 9 ) 51.06

    ::区域=12absinC28=1289CsinC=28289C=sin-11(282889)51.06

    Example 3
    ::例3

    Given triangle  A B C with A = 12 , b = 4  and  A r e a = 1.7   u n i t s 2 , what is the length of side c
    ::给定三角ABC, A=12, b=4 和地区=1.7 单位2, 长度是多少 c ?

    A r e a = 1 2 c b sin A 1.7 = 1 2 c 4 sin 12 c = 1.7 2 4 sin 12 4.09

    ::面积=12=12cbsin=A1.7=12c4sin=12c=1c724sin=12c4.09

    Example 4
    ::例4

    The area of a triangle is 3 square units. Two sides of the triangle are 4 units and 5 units. What is the measure of their included angle?

    3 = 1 2 4 5 sin θ θ = sin 1 ( 3 2 4 5 ) 17.46

    ::三角形区域为 3 平方 单位 。 三角形的两边为 4 个 单位 和 5 个 单位 。 三角形的角是 3 = 12 4 5 5 sinsin - 1 (3 24 5) 17. 46

    Example 5
    ::例5

    What is the area of  Δ X Y Z with x = 11 , y = 12 , z = 13 ?
    ::x=11,y=12,z=13的 XYZ区域是什么?

    Since none of the angles are given, there are two possible solution paths. You could use the to find one angle.
    ::由于没有给出任何角度, 有两个可能的解决方案路径 。 您可以使用这个角度来找到一个角度 。

    A r e a = 1 2 12 13 sin 52.02 61.5   u n i t s 2
    ::12=12=12=13=13=sin=52.02=61.5单位2

    The angle opposite the side of length 11  is approximately 52.02  therefore the area is:
    ::长度11对面的角大约为52.02。 因此,这个区域是:

    A r e a = 1 2 12 13 sin 52.02 61.5   u n i t s 2
    ::12=12=12=13=13=sin=52.02=61.5单位2

    Another way to find the area is through the use of Heron’s Formula which is:
    ::寻找这个区域的另一种方式是使用Heron的公式,即:

    A r e a = s ( s a ) ( s b ) ( s c )
    ::区域=(s-a)(s-b)(s-c)

    Where s  is the semiperimeter:
    ::这里的半径是:

    s = a + b + c 2
    ::=a+b+c2 =a+b+c2

    Using Heron's formula to find the area of Δ X Y Z  returns the same value:
    ::使用 Heron 的公式查找 XYZ 区域, 返回相同值 :

    s = a + b + c 2 s = 11 + 12 + 13 2 = 36 2 = 18   A = 18 ( 18 11 ) ( 18 12 ) ( 18 13 ) A = 18 7 6 5 A = 3780 61.5   u n i t s 2
     
    ::=a+b+c2s=11+12+132=362=18 A=18(18-11)(18-12)(18-13)A=18+7_6__5A=3780=61.5单位2

    Example 5
    ::例5

    The area of a triangle is 3 square units. Two sides of the triangle are 4 units and 5 units. What is the measure of their included angle?
    ::三角形的区域是 3 平方 单位 。 三角形的两边是 4 个 单位 和 5 个 单位 。 三角形所包括角度的度量是 多少 ?

    3 = 1 2 4 5 sin θ
    ::3=12455

    θ = sin 1 ( 3 2 4 5 ) 17.45
    ::-=YTET -伊甸园字幕组=- 翻译:

      Summary
    • The height of a triangle can be found even if you are only given partial information.
      ::即使只给出部分信息,也能找到三角形的高度。
    • Using the sine function with a known angle and side, the height can be calculated.  For example, if sin C = h / a ,  then h = a sin C  
      ::使用带有已知角度和侧面的正弦函数时,可以计算高度。例如,如果 sinC=h/a,那么h=asinC
    • From there, the area can be found by substituting the height value into the triangle area formula. For example,   Area  = 1 2 b a sin C  
      ::从这里可以找到此区域, 将高度值替换为三角形区域公式。 例如, 区域 = 12basinC
    • Ensure that the given angle does not correspond to either of the given sides in the formula.
      ::确保给定角度与公式中任一特定方不相符。

    Review
    ::回顾

    For 1-11, find the area of each triangle.
    ::1-11,找到每个三角形的面积

    1. Δ A B C  if a = 13 , b = 15 , and C = 70 .
      ::a=13,b=15,和a=70,ABC=70。
    2. Δ A B C  if b = 8 , c = 4 , and A = 58 .
      ::b=8,c=4,和A=58,ABC=8,c=4。
    3. Δ A B C  if b = 34 , c = 29 , and A = 125 .
      ::b=34,c=29,和A=125
    4. Δ A B C  if a = 3 , b = 7 , and C = 81 .
      ::ABC=3,b=7,和QC=81。
    5. Δ A B C  if a = 4.8 , c = 3.7 , and B = 54 .
      ::a=4.8,c=3.7,和B=54。
    6. Δ A B C  if a = 12 , b = 5 , and C = 22 .
      ::a=12,b=5,和a=22,ABC=22。
    7. Δ A B C  if a = 3 , b = 10 , and C = 65 .
      ::ABC 如果a=3,b=10,和C=65。
    8. Δ A B C  if a = 5 , b = 9 , and C = 11 .
      ::ABC如果a=5,b=9,和c=11。
    9. Δ A B C  if a = 5 , b = 7 , and c = 8 .
      ::a=5,b=7,c=8的ABC。
    10. Δ A B C  if a = 7 , b = 8 , and c = 14 .
      ::a=7,b=8,c=14的ABC。
    11. Δ A B C  if a = 12 , b = 14 , and c = 13 .
      ::a=12,b=14,c=13的ABC。
    12. The area of a triangle is 12 square units. Two sides of the triangle are 8 units and 4 units. What is the measure of their included angle?
      ::三角形区域为 12 平方 单位 。 三角形的两边为 8 个 单位和 4 个 单位 。 包括角度的测量值是多少 ?
    13. The area of a triangle is 23 square units. Two sides of the triangle are 14 units and 5 units. What is the measure of their included angle?
      ::三角形区域为23平方单位,三角形两侧为14平方单位和5平方单位。三角形角的度量是多少?
    14. Given  Δ D E F has area 32 square inches, what is the angle included between side length 9 and 10?
      ::鉴于ZQDEF的面积为32平方英寸,侧长9至10之间的角是多少?
    15. Given  Δ G H I has area 15 square inches, what is the angle included between side length 7 and 11?
      ::鉴于GHI的面积为15平方英寸,侧长7至11之间的角是多少?

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。