章节大纲

  • A periodic function that does not start at the sinusoidal axis or at a maximum or a minimum has been shifted horizontally.  This horizontal movement allows for different starting points since a sine wave does not have a beginning or an end.
    ::不从正弦轴开始, 或最大或最小的周期函数被水平移动。 此水平移动允许不同的起点, 因为正弦波没有开始或结束 。

    What are five other ways of writing the function f ( x ) = 2 sin x ?
    ::写函数 f(x) = 2sinx 的另外五种方式是什么?

    Phase Shift of Sinusoidal Functions
    ::子类函数的阶段移位

    The general sinusoidal function is:
    ::一般的正弦值函数是:

    f ( x ) = ± a sin ( b ( x + c ) ) + d
    :伤心xxx)+d)+(b(x+c)+(d)+(xx)+(xx)+

    The constant c  controls the phase shift . Phase shift is the horizontal shift left or right for periodic functions.  If c = π 2  then the sine wave is shifted left by π 2 .  If c = 3  then the sine wave is shifted right by 3.  This is the opposite direction than you might expect, but it is consistent with the rules of transformations for all functions. 
    ::常数 c 控制了相位移。 相位移是用于周期函数的水平向左或右移。 如果 c2, 则正弦波由 2 转移。 如果 c3 则正弦波由 3 转移。 这是与您预期相反的方向, 但与所有函数的转换规则是一致的 。

    To graph a function such as   f ( x ) = 3 cos ( x π 2 ) + 1 , first find the start and end of one period. Then sketch only that portion of the sinusoidal axis. Finally, plot the 5 important points for a cosine graph while keeping the in mind. The graph is shown below:
    ::要绘制函数, 如 f( x) = 3cos( x2) +1 , 请先找到一个周期的开始和结束。 然后只绘制正弦轴的部分。 最后, 绘制正弦图的5个重要点, 并记住。 图表显示如下 :

    lesson content

    Generally b  is always written to be positive.  If you run into a situation where  b is negative, use your knowledge of even and odd functions to rewrite the function.
    ::b 一般是肯定的。如果遇到b为否定的情况,请使用您对偶数和奇数功能的知识重写该函数。

    cos ( x ) = cos ( x ) sin ( x ) = sin ( x )

    ::cos( - x) =cos ( x) sin ( - x) sin ( x)

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to write f ( x ) = 2 sin x  in five different ways. The function f ( x ) = 2 sin x  can be rewritten an infinite number of ways.
    ::早些时候, 您被要求以五种不同的方式写入 f( x) = 2sinx 。 函数 f( x) = 2sinx 可以重写无数种方式 。

    2 sin x = 2 cos ( x + π 2 ) = 2 cos ( x π 2 ) = 2 sin ( x π ) = 2 sin ( x 8 π )

    ::22222222222222222222222222222222(x_88)22828

    It all depends on where you choose start and whether you see a positive or negative sine or cosine graph.
    ::这一切都取决于您选择的起始位置,以及您是否看到正正正正弦或负正弦或正弦图。

    Example 2
    ::例2

    Given the following graph, identify equivalent algebraic models.
    ::根据下图,确定等效代数模型。

    lesson content

    Either this is a sine function shifted right by π 4  or a cosine graph shifted left 5 π 4 .
    ::要么是正弦函数由 +++ 4 向右移动, 要么是正弦图向左移动 5+4 。

    f ( x ) = sin ( x π 4 ) = cos ( x + 5 π 4 )
    :伤心xx) =sin(x4) =cos(x+54) =cos(x+54)

    Example 3
    ::例3

    At t = 5  minutes William steps up 2 feet to sit at the lowest point of the Ferris wheel that has a diameter of 80 feet.  A full hour later he finally is let off the wheel after making only a single revolution.  During that hour he wondered how to model his height over time in a graph and equation. 
    ::T=5分钟后,威廉升起2英尺,坐在直径为80英尺的Ferris轮的最低点。整整一小时后,他终于在一次革命后被从方向盘上解脱出来。 在那个时候,他想知道如何用图表和方程来模拟他的身高。

    Since the period is 60 which works extremely well with the 360  in a circle, this problem will be shown in degrees.
    ::由于60岁这一时期在一个圆圈里与360极为有效,这一问题将以度表示。

    Time (minutes) Height (feet)
    5 2
    20 42
    35 82
    50 42
    65 2

    lesson content

    William chooses to see a negative cosine in the graph.  He identifies the amplitude to be 40 feet.  The vertical shift of the sinusoidal axis is 42 feet.  The horizontal shift is 5 minutes to the right. 
    ::威廉选择在图形中看到负余弦。 他将振幅确定为40英尺。 正弦轴的垂直移动为42英尺。 水平移动向右为5分钟。

    The period is 60 (not 65) minutes which implies b = 6  when graphed in degrees.
    ::时间段为60分钟(不是65分钟),这意味着以度表示时 b=6。

    60 = 360 b
    ::60=360b

    Thus one equation would be:
    ::因此,一个等式是:

    f ( x ) = 40 cos ( 6 ( x 5 ) ) + 42
    ::f(x) +42 (6(x)-5)

    Example 4
    ::例4

    Tide tables report the times and depths of low and high tides.  Here is part of tide report from Salem, Massachusetts dated September 19, 2006. 
    ::潮汐表报告了低潮和高潮的时间和深度,这是2006年9月19日马萨诸塞州萨利姆的潮汐报告的一部分。

    10:15 AM
    ::上午10时15分

    9 ft.
    ::9英尺

    High Tide
    ::高潮下

    4:15 PM
    ::下午4:15

    1 ft.
    ::1英尺

    Low Tide
    ::低潮下

    10:15 PM
    ::上午10时15分

    9 ft.
    ::9英尺

    High Tide
    ::高潮下

    Find an equation that predicts the height based on the time.  Choose when t = 0  carefully. 
    ::查找一个根据时间预测高度的方程式。 仔细选择 t=0 的时间 。

    There are two logical places to set t = 0 .  The first is at midnight the night before and the second is at 10:15 AM.  The first option illustrates a phase shift that is the focus of this concept, but the second option produces a simpler equation.  Set t = 0  to be at midnight and choose units to be in minutes. 
    ::有两个逻辑位置可以设定 t=0 。 第一个是前一天午夜, 第二个是上午10: 15。 第一个选项显示的是这个概念的焦点, 但第二个选项产生一个简单的方程式。 设定 t=0 在午夜, 并在分钟内选择单位 。

    Time (hours : minutes) Time (minutes) Tide (feet)
    10:15 615 9
    16:15 975 1
    22:15 1335 9
      615 + 975 2 = 795 5
      1335 + 975 2 = 1155 5

    These numbers seem to indicate a positive cosine curve.  The amplitude is 4 and the vertical shift is 5.  The horizontal shift is 615 and the period is 720.
    ::这些数字似乎表示正余弦曲线。 振幅为 4, 垂直变化为 5。 水平变化为 615, 周期为 720。

    720 = 2 π b b = π 360
    ::720=2bb360

    Thus one equation is:
    ::因此,一个方程式是:

    f ( x ) = 4 cos ( π 360 ( x 615 ) ) + 5
    ::f(x) = 4cos( 360(x-615) +5

    Example 5
    ::例5

    Use the equation from Example 4 to find out when the tide will be at exactly 8 ft on September 19 t h
    ::利用例4的方程式 来找出9月19日 潮水将到达8英尺

     This problem gives you the  y and asks you to find the x .  Later you will learn how to solve this algebraically, but for now use the power of the intersect button on your calculator to intersect the function with the line y = 8 .  Remember to find all the  x values between 0 and 1440 to account for the entire 24 hours.
    ::此问题给了您 y , 并要求您找到 x 。 以后您将学习如何解析这个代数, 但现在您将使用计算器上的交叉按钮的力量将函数与 y= 8 线交叉。 记住要找到 0 至 1440 之间的所有 x 值, 以计算整个 24 小时 。

    lesson content

    There are four times within the 24 hours when the height is exactly 8 feet.  You can convert these times to hours and minutes if you prefer.
    ::在24小时之内,高度为8英尺,有4次。如果您愿意,可以将这些时间转换为小时和分钟。

    t 532.18 (8:52), 697.82 (11:34), 1252.18 (20:52), 1417.82 (23:38)
    ::T 532.18 (8:52)、697.82 (11:34)、1252.18 (20:52)、1417.82 (23:38)

      Summary
    • For the general form of the sinusoidal function f ( x ) = ± a sin ( b ( x + c ) ) + d ,  the constant c  represents the phase shift, or horizontal shift.
      • If c  is positive, the function is shifted left. If c  is negative, the function is shifted right.
        ::如果 c 是正,则函数向左移。如果 c 是负,则函数向右移。

      ::对于正弦函数f(x)asin(b(x+c)+d)的一般形式,恒定 c 表示相位变化或水平变化。如果c为正,则函数向左移动。如果c为负,则函数向右移动。

    Review
    ::回顾

    Graph each of the following functions.
    ::绘制下列函数的每一个图。

    1. f ( x ) = 2 cos ( x π 2 ) 1
    ::1. f(x)=2cos(x)2-1

    2. g ( x ) = sin ( x π ) + 3
    ::2. g(x)+3 g(x) @sin @(x)+3

    3. h ( x ) = 3 cos ( 2 ( x π ) )
    ::3. h(x)=3cos(2(x))

    4. k ( x ) = 2 sin ( 2 x π ) + 1
    ::4. k(x) @ @% 2sin @ (2x)+1

    5. j ( x ) = cos ( x + π 2 )
    ::5. j(x) (x) 2

    Give one possible sine equation for each of the graphs below.
    ::给下方图中的每个图表提供一个可能的正弦方程。

    6.

    lesson content

    7.

    lesson content

    8.

    lesson content

    Give one possible cosine function for each of the graphs below.
    ::给下方每个图表提供一个可能的余弦函数 。

    9.

    lesson content

    10.

    lesson content

    11.

    lesson content

    The temperature over a certain 24 hour period can be modeled with a sinusoidal function.  At 3:00, the temperature for the period reaches a low of 22 F .  At 15:00, the temperature for the period reaches a high of 40 F .
    ::特定24小时的温度可模拟为正弦函数。 3: 00时, 这一期间的温度低至22°F。 下午3:00时, 这一期间的温度高至40°F。

    12. Find an equation that predicts the temperature based on the time in minutes.  Choose t = 0  to be midnight.
    ::12. 找到一个根据分钟中的时间预测温度的方程。选择 t=0 为午夜。

    13. Use the equation from #12 to predict the temperature at 4:00 PM. 
    ::13. 使用第12号方程式预测下午4点的温度。

    14. Use the equation from #12 to predict the temperature at 8:00 AM. 
    ::14. 利用12号的方程来预测早上8点的温度。

    15. Use the equation from #12 to predict the time(s) it will be 32 F .
    ::15. 使用第12号方程式预测时间为32-F。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。