Section outline

  • The Binomial Theorem tells you how to expand a binomial such as  ( 2 x 3 ) 5  without having to compute the repeated distribution. What is the expanded version of ( 2 x 3 ) 5 ?
    ::Binomial 理论告诉您如何扩大二进制( 2x-3) 5 , 而不必计算重复的分布 。 扩展版本 ( 2x-3) 5 是什么 ?

    Introduction to the Binomial Theorem
    ::Binomial定理介绍

    The Binomial Theorem states:
    ::Binomial定理指出:

    ( a + b ) n = i = 0 n ( n i ) a i b n i
    :sada+b)ni=0n(ni)aibn-i

    Writing out a few terms of the summation symbol helps you to understand how this theorem works:
    ::写出总和符号的几个术语, 帮助您了解这个定理是如何运作的:

    ( a + b ) n = ( n 0 ) a n + ( n 1 ) a n 1 b 1 + ( n 2 ) a n 2 b 2 + + ( n n ) b n

    :sada+b)n=(n0)an+(n1)an-1b1+(n2)an-2b2(nn)bn

    Going from one term to the next in the expansion, you should notice that the exponents of a  decrease while the exponents of b  increase. You should also notice that the coefficients of each term are combinations. Recall that  ( n 0 )  is the number of ways to choose  objects from a set of  n  objects. 
    ::从一个词到扩展的下一个词,您应该注意到,在 b 增加的引言中,减幅的指数是减少的指数。 您也应该注意到, 每个词的系数是组合的。 回顾 (n0) 是从一组 n 对象中选择对象的方法数 。

    Take the following binomial: 
    ::采取以下二进制 :

    ( m n ) 6
    :sadm-n)6

    It can be expanded using the Binomial Theorem:
    ::使用Binomial定理可以扩大:

    ( m n ) 6 = ( 6 0 ) m 6 + ( 6 1 ) m 5 ( n ) 1 + ( 6 2 ) m 4 ( n ) 2 + ( 6 3 ) m 3 ( n ) 3       + ( 6 4 ) m 2 ( n ) 4 + ( 6 5 ) m 1 ( n ) 5 + ( 6 6 ) ( n ) 6 = 1 m 6 6 m 5 n + 15 m 4 n 2 20 m 3 n 3 + 15 m 2 n 4 6 m 1 n 5 + 1 n 6

    :sadm-n)6=(60)m6+(61)5m5No1+(62)m4No2+(62)4No2+(63)3No3+(64)m2No4+(65)m1No5+(66)No6=1m6-6m5n+6m5n+15m4n2-20m3n3+15m2n3+15m2n4-6m1n5+1n6)

    Be extremely careful when working with binomials of the form ( a b ) n . You need to remember to capture the negative with the second term as you write out the expansion: ( a b ) n = ( a + ( b ) ) n .
    ::在处理表(a-b)n的二进制时,要非常小心。在写扩展(a-b)n=(a+(-b))n时,需要记住用第二学期来记录负数。n。

    Another way to think about the coefficients in the Binomial Theorem is that they are the numbers from Pascal’s Triangle. Look at the expansions of ( a + b ) n  below and notice how the coefficients of the terms are the numbers in Pascal’s Triangle.
    ::思考Binomial理论中系数的另一种方式是它们来自帕斯卡尔三角。 看看下面(a+b)的扩展,并注意这些术语的系数是如何在帕斯卡尔三角中的数字的。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to expand ( 2 x 3 ) 5 The expanded version of ( 2 x 3 ) 5   is:
    ::早些时候,你被要求扩大(2x-3)5. 扩大版(2x-3)5 如下:

    ( 2 x 3 ) 5 = ( 5 0 ) ( 2 x ) 5 + ( 5 1 ) ( 2 x ) 4 ( 3 ) 1 + ( 5 2 ) ( 2 x ) 3 ( 3 ) 2       + ( 5 3 ) ( 2 x ) 2 ( 3 ) 3 + ( 5 4 ) ( 2 x ) 1 ( 3 ) 4 + ( 5 5 ) ( 3 ) 6 = ( 2 x ) 5 + 5 ( 2 x ) 4 ( 3 ) 1 + 10 ( 2 x ) 3 ( 3 ) 2       + 10 ( 2 x ) 2 ( 3 ) 3 + 5 ( 2 x ) 1 ( 3 ) 4 + ( 3 ) 5 = 32 x 5 240 x 4 + 720 x 3 1080 x 2 + 810 x 243

    :sad2x3)5=(50)(2x)5+(50)(2x)5+(51)(2x)4(3)1+(52)(2x)3(3)3(3)2+(53)(2x)(3)(2x)(2x)(2)(3)(3)3+(54)(2x)(1)(3)4(3)(3)(3)6=(2x)5(5)(2x)(4)(3)(3)1(2x)(2x)(3)5+10(2x)(2x)(2x)(3)3)(3)3+5(2x)(2x)(3)3)(3)(3)3(3)3(3)(3)3(3)(3)+(3)(3)(3)5(3)(3)(3)(3)(3x)(3)(2x)(2x)(2x)(2x)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(2x)(2x)(2x)(3)(3)(2x)(3)(3)(3)(2x)(3)(3)(3)(3)(3)(3)(3)(2x)(2x)(3)(3)(3)(3)(3)(3)(3)(3)(3)(2x)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3))))))))))+5)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(2x)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(2x)(3)(3

    Example 2
    ::例2

    What is the coefficient of the term x 7 y 9  in the expansion of the binomial ( x + y ) 16 ?
    ::二进制( X+y) 16 扩展中的 X7y9 术语系数是多少?

    The Binomial Theorem allows you to calculate just the coefficient you need.
    ::Binomial 定理允许您只计算您需要的系数 。

    ( 16 9 ) = 16 ! 9 ! 7 ! = 16 15 14 13 12 11 10 7 6 5 4 3 2 1 = 11 , 440

    Example 3
    ::例3

    What is the coefficient of  x 6  in the expansion of ( 4 3 x ) 7 ?
    ::在扩大(4-3x)7时x6系数是多少?

    For this problem you should calculate the whole term, since the 3 and the 4 in ( 3 4 x ) will impact the coefficient of x 6 as well. ( 7 6 ) 4 1 ( 3 x ) 6 = 7 4 729 x 6 = 20 , 412 x 6 . The coefficient is 20,412.
    ::对于这个问题,你应该计算整个术语,因为3-4x中的3和4也将影响x6的系数。 (7641(-3x)6=74729x6=20,412x6.该系数为20,412。)

    Example 4
    ::例4

    Compute the following summation.
    ::计算下列总和。

    i = 0 4 ( 4 i )
    ::i=04(4i)

    This is asking for ( 4 0 ) + ( 4 1 ) + + ( 4 4 ) , which are the sum of all the coefficients of  ( a + b ) 4 .
    ::这是要求(40)+(41)(44),这是(a+b)4的所有系数之和。

    1 + 4 + 6 + 4 + 1 = 16

    Example 5
    ::例5

    Collapse the following polynomial using the Binomial Theorem.
    ::使用 Binomial 理论折叠以下的多义理论 。

    32 x 5 80 x 4 + 80 x 3 40 x 2 + 10 x 1
    ::32x5-80x4+80x3-40x2+10x-1

    Since the last term is -1 and the power on the first term is a 5 you can conclude that the second half of the binomial is ( ? 1 ) 5 . The first term is positive and ( 2 x ) 5 = 32 x 5 , so the first term in the binomial must be 2 x . The binomial is ( 2 x 1 ) 5 .
    ::由于上一个学期是-1,而第一个学期的权力是5,你可以得出结论,下半学期是(?)-1。 第一个学期是正数,第二个学期是2x5=32x5,因此二学期的第一个学期必须是2x。二学期是(2x-1-5)。

      Summary
    • The Binomial Theorem allows you to expand a binomial without computing the repeated distribution.
      • The theorem states: ( a + b ) n = i = 0 n ( n i ) a n i b i .  
        ::Theorem指出sada+b)ni=0n(ni)an-ibi。

      ::Binomial 理论允许您在不计算重复分布的情况下扩展二进制。 理论指出sad a+b) ni=0n( ni) an- ibi 。
    • In the expansion, exponents of 'a' decrease while exponents of 'b' increase, and coefficients of each term are combinations.
      ::在扩展中,“a”减少的指数和“b”增加的指数,以及每个术语的系数是组合。
    • Be careful with binomials of the form ( a b ) n ,  as you need to capture the negative with the second term in the expansion. 
      ::请注意表(a-b)n的二进制,因为您需要在扩展的第二个任期内捕捉负数。
    • The coefficients in the Binomial Theorem are the numbers from Pascal's Triangle.
      ::Binomial定理中的系数 是帕斯卡尔三角的数字。

    Review
    ::回顾

    Expand each of the following binomials using the Binomial Theorem.
    ::使用二进制定理, 展开以下的二进制 。

    1. ( x y ) 4
    ::1. (x-y)4

    2. ( x 3 y ) 5
    ::2. (x-3y)5

    3. ( 2 x + 4 y ) 7
    ::3. (2x+4y)7

    4. What is the coefficient of  x 4  in ( x 2 ) 7 ?
    ::4. (x-2)7中的x4系数是多少?

    5. What is the coefficient of x 3 y 5 in ( x + y ) 8 ?
    ::5. (x+y)8中的x3y5系数是多少?

    6. What is the coefficient of  x 5  in ( 2 x 5 ) 6 ?
    ::6. 乘以x5的系数是多少(2x-5)6 ?

    7. What is the coefficient of y 2 in ( 4 y 5 ) 4 ?
    ::7. y2在(4Y-5)中的系数是多少? 4

    8. What is the coefficient of  x 2 y 6  in ( 2 x + y ) 8 ?
    ::8. 在(2x+y)8中x2y6系数是多少?

    9. What is the coefficient of  x 3 y 4  in ( 5 x + 2 y ) 7 ?
    ::9. 乘以x3y4(5x+2y)7的系数是多少?

    Compute the following summations.
    ::计算下列总和。

    10. i = 0 9 ( 9 i )
    ::10. i=09(9i)

    11. i = 0 12 ( 12 i )
    ::11. i=012(12i)

    12. i = 0 8 ( 8 i )
    ::12. i=08(8)i

    Collapse the following polynomials using the Binomial Theorem.
    ::使用 Binomial 理论折叠以下多边名词 。

    13. 243 x 5 405 x 4 + 270 x 3 90 x 2 + 15 x 1
    ::13. 243x5-405x4+270x3-90x2+15x-1

    14. x 7 7 x 6 y + 21 x 5 y 2 35 x 4 y 3 + 35 x 3 y 4 21 x 2 y 5 + 7 x y 6 y 7
    ::14. x7-7x6y+21x5y2-35x4y3+35x4y3+35x3y4-21x2y5+7xy6-y7

    15. 128 x 7 448 x 6 y + 672 x 5 y 2 560 x 4 y 3 + 280 x 3 y 4 84 x 2 y 5 + 14 x y 6 y 7
    ::15. 128x7-448x6y+672x5y2-560x4y3+280x3y4-84x2y5+14xy6-y7

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。