12.8 二元论理论
Section outline
-
The Binomial Theorem tells you how to expand a binomial such as without having to compute the repeated distribution. What is the expanded version of ?
::Binomial 理论告诉您如何扩大二进制( 2x-3) 5 , 而不必计算重复的分布 。 扩展版本 ( 2x-3) 5 是什么 ?Introduction to the Binomial Theorem
::Binomial定理介绍The Binomial Theorem states:
::Binomial定理指出:
:a+b)ni=0n(ni)aibn-i
Writing out a few terms of the summation symbol helps you to understand how this theorem works:
::写出总和符号的几个术语, 帮助您了解这个定理是如何运作的:
:a+b)n=(n0)an+(n1)an-1b1+(n2)an-2b2(nn)bn
Going from one term to the next in the expansion, you should notice that the exponents of decrease while the exponents of increase. You should also notice that the coefficients of each term are combinations. Recall that is the number of ways to choose objects from a set of objects.
::从一个词到扩展的下一个词,您应该注意到,在 b 增加的引言中,减幅的指数是减少的指数。 您也应该注意到, 每个词的系数是组合的。 回顾 (n0) 是从一组 n 对象中选择对象的方法数 。Take the following binomial:
::采取以下二进制 :
:m-n)6
It can be expanded using the Binomial Theorem:
::使用Binomial定理可以扩大:
:m-n)6=(60)m6+(61)5m5
1+(62)m4
2+(62)4
2+(63)3
3+(64)m2
4+(65)m1
5+(66)
6=1m6-6m5n+6m5n+15m4n2-20m3n3+15m2n3+15m2n4-6m1n5+1n6)
Be extremely careful when working with binomials of the form . You need to remember to capture the negative with the second term as you write out the expansion: .
::在处理表(a-b)n的二进制时,要非常小心。在写扩展(a-b)n=(a+(-b))n时,需要记住用第二学期来记录负数。n。Another way to think about the coefficients in the Binomial Theorem is that they are the numbers from Pascal’s Triangle. Look at the expansions of below and notice how the coefficients of the terms are the numbers in Pascal’s Triangle.
::思考Binomial理论中系数的另一种方式是它们来自帕斯卡尔三角。 看看下面(a+b)的扩展,并注意这些术语的系数是如何在帕斯卡尔三角中的数字的。Examples
::实例Example 1
::例1Earlier, you were asked to expand . The expanded version of is:
::早些时候,你被要求扩大(2x-3)5. 扩大版(2x-3)5 如下:
:2x3)5=(50)(2x)5+(50)(2x)5+(51)(2x)4(3)1+(52)(2x)3(3)3(3)2+(53)(2x)(3)(2x)(2x)(2)(3)(3)3+(54)(2x)(1)(3)4(3)(3)(3)6=(2x)5(5)(2x)(4)(3)(3)1(2x)(2x)(3)5+10(2x)(2x)(2x)(3)3)(3)3+5(2x)(2x)(3)3)(3)(3)3(3)3(3)(3)3(3)(3)+(3)(3)(3)5(3)(3)(3)(3)(3x)(3)(2x)(2x)(2x)(2x)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(2x)(2x)(2x)(3)(3)(2x)(3)(3)(3)(2x)(3)(3)(3)(3)(3)(3)(3)(2x)(2x)(3)(3)(3)(3)(3)(3)(3)(3)(3)(2x)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3))))))))))+5)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(2x)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(2x)(3)(3
Example 2
::例2What is the coefficient of the term in the expansion of the binomial ?
::二进制( X+y) 16 扩展中的 X7y9 术语系数是多少?The Binomial Theorem allows you to calculate just the coefficient you need.
::Binomial 定理允许您只计算您需要的系数 。Example 3
::例3What is the coefficient of in the expansion of ?
::在扩大(4-3x)7时x6系数是多少?For this problem you should calculate the whole term, since the 3 and the 4 in will impact the coefficient of as well. . The coefficient is 20,412.
::对于这个问题,你应该计算整个术语,因为3-4x中的3和4也将影响x6的系数。 (7641(-3x)6=74729x6=20,412x6.该系数为20,412。)Example 4
::例4Compute the following summation.
::计算下列总和。
::i=04(4i)This is asking for , which are the sum of all the coefficients of .
::这是要求(40)+(41)(44),这是(a+b)4的所有系数之和。Example 5
::例5Collapse the following polynomial using the Binomial Theorem.
::使用 Binomial 理论折叠以下的多义理论 。
::32x5-80x4+80x3-40x2+10x-1Since the last term is -1 and the power on the first term is a 5 you can conclude that the second half of the binomial is . The first term is positive and , so the first term in the binomial must be . The binomial is .
::由于上一个学期是-1,而第一个学期的权力是5,你可以得出结论,下半学期是(?)-1。 第一个学期是正数,第二个学期是2x5=32x5,因此二学期的第一个学期必须是2x。二学期是(2x-1-5)。Summary -
The Binomial Theorem allows you to expand a binomial without computing the repeated distribution.
-
The theorem states:
::Theorem指出a+b)ni=0n(ni)an-ibi。
::Binomial 理论允许您在不计算重复分布的情况下扩展二进制。 理论指出a+b) ni=0n( ni) an- ibi 。
-
The theorem states:
-
In the expansion, exponents of 'a' decrease while exponents of 'b' increase, and coefficients of each term are combinations.
::在扩展中,“a”减少的指数和“b”增加的指数,以及每个术语的系数是组合。 -
Be careful with binomials of the form
as you need to capture the negative with the second term in the expansion.
::请注意表(a-b)n的二进制,因为您需要在扩展的第二个任期内捕捉负数。 -
The coefficients in the Binomial Theorem are the numbers from Pascal's Triangle.
::Binomial定理中的系数 是帕斯卡尔三角的数字。
Review
::回顾Expand each of the following binomials using the Binomial Theorem.
::使用二进制定理, 展开以下的二进制 。1.
::1. (x-y)42.
::2. (x-3y)53.
::3. (2x+4y)74. What is the coefficient of in ?
::4. (x-2)7中的x4系数是多少?5. What is the coefficient of in ?
::5. (x+y)8中的x3y5系数是多少?6. What is the coefficient of in ?
::6. 乘以x5的系数是多少(2x-5)6 ?7. What is the coefficient of in ?
::7. y2在(4Y-5)中的系数是多少? 48. What is the coefficient of in ?
::8. 在(2x+y)8中x2y6系数是多少?9. What is the coefficient of in ?
::9. 乘以x3y4(5x+2y)7的系数是多少?Compute the following summations.
::计算下列总和。10.
::10. i=09(9i)11.
::11. i=012(12i)12.
::12. i=08(8)iCollapse the following polynomials using the Binomial Theorem.
::使用 Binomial 理论折叠以下多边名词 。13.
::13. 243x5-405x4+270x3-90x2+15x-114.
::14. x7-7x6y+21x5y2-35x4y3+35x4y3+35x3y4-21x2y5+7xy6-y715.
::15. 128x7-448x6y+672x5y2-560x4y3+280x3y4-84x2y5+14xy6-y7Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
The Binomial Theorem allows you to expand a binomial without computing the repeated distribution.