3.6 区别规则:产品和引号
Section outline
-
Based on your knowledge of the derivative of a function as a limit, and the discussed in a previous concept, can you make a prediction at this time how the derivative of a product or quotient of two functions should be determined? Should the derivative results follow the limit properties? Why?
::根据你对一个函数作为限值的衍生物的了解,以及以前一个概念中所讨论的情况,你目前能否预测一个函数的衍生物或两个函数的商数如何确定?衍生物的结果是否应该遵循限制特性?为什么?Derivatives of Products and Quotients
::产品和报价的衍生物We want to formulate a rule for finding d d x [ f ( x ) ⋅ g ( x ) ] . Using the definition of the derivative, we can write:
::我们想为找到 ddx[f(x)g(x)] 制定一条规则。 我们可以使用衍生物的定义写:d d x [ f ( x ) g ( x ) ] = lim h → 0 f ( x + h ) g ( x + h ) − f ( x ) g ( x ) h
::ddx[ f( x) g( x)] =limh0f( x+h) g( x+h) - f( x) g( x) hWith a little algebraic manipulations, the above formulation can be transformed to the following result:
::如果稍作代数操控,上述配方可转化为以下结果:The Product Rule: If f and g are differentiable at x , then
::产品规则:如果f和g在xx时不同,那么d d x [ f ( x ) ⋅ g ( x ) ] = f ( x ) d d x g ( x ) + g ( x ) d d x f ( x )
::ddx[f(x)\g(x)]=f(x)ddxg(x)+g(x)ddxf(x)In a simpler notation:
::更简单的注解如下:( f ⋅ g ) ′ = f ⋅ g ′ + g ⋅ f ′
:fg)fggggf
Apply the product rule and find d y d x for y = ( 3 x 4 + 2 ) ( 7 x 3 − 1 )
::应用产品规则并找到y=( 3x4+2)( 7x3- 1) 的uddxThere two methods to solve this problem. One is to multiply to find the product and then use the derivative of the sum rule. The second is to directly use the product rule. Either rule will produce the same answer. We begin with the sum rule.
::解决这个问题有两种方法。 一种是乘以找到产品, 然后使用总和规则的衍生物。 第二种是直接使用产品规则。 两种规则都会产生相同的答案。 我们从总和规则开始。y = ( 3 x 4 + 2 ) ( 7 x 3 − 1 ) = 21 x 7 − 3 x 4 + 14 x 3 − 2
::y=( 3x4+2)( 7x3- 1) = 21x7- 3x4+14x3-2)Taking the derivative of the sum yields
::取总产量的衍生物d y d x = 147 x 6 − 12 x 3 + 42 x 2 + 0 = 147 x 6 − 12 x 3 + 42 x 2
::dydx=147x6-12x3+42x2+0=147x6-12x3+42x2Now we use the product rule.
::现在我们使用产品规则。y ′ = ( 3 x 4 + 2 ) ⋅ ( 7 x 3 − 1 ) ′ + ( 3 x 4 + 2 ) ′ ⋅ ( 7 x 3 − 1 ) = ( 3 x 4 + 2 ) ( 21 x 2 ) + ( 12 x 3 ) ( 7 x 3 − 1 ) = ( 63 x 6 + 42 x 2 ) + ( 84 x 6 − 12 x 3 ) = 147 x 6 − 12 x 3 + 42 x 2
::y( 3x4+2) ( 7x3- 1) ( 3x4+2) ( 7x3- 1) ( 7x3- 1) = (3x4+2)( 212x2) +( 12x3)( 7x3- 1) = (63x6+42x2) +( 84x6- 12x3) =147x6 - 12x3+42x2Which is the same answer.
::答案是一样的Having introduced the Product Rule, the natural question is “Is there a Quotient Rule ?”. The answer is a definite yes! In fact, the Quotient Rule can be derived using the Product Rule (as you might have guessed), by transforming a quotient f ( x ) g ( x ) to a product f ( x ) ⋅ [ g ( x ) ] − 1 .
::在引入了产品规则之后,自然的问题是“是否有引号规则?” 答案是肯定的肯定的!事实上,可以通过将商数f(x)g(x)x(x)转换成产品f(x){[g(x)]-1,从而使用产品规则(如你可能猜想的那样)得出引号规则。The Quotient Rule: If f and g are differentiable functions at x and g ( x ) ≠ 0 , then
::引号规则:如果f和g在 x 和 g(x) 0 上具有可区别的函数,则 f 和 g(x) 0 。( f g ) ′ = g ⋅ f ′ − f ⋅ g ′ g 2
:g) gfffgg2
Keep in mind that the order of operations is important (because of the minus sign in the numerator) and ( f g ) ′ ≠ f ′ g ′ .
::切记操作的顺序很重要(因为分子中的减号)和(fg)\\f\\\g\\\\\f\h\h\h\h\h\h\h\h\h\h\h\h\h\h\h\h\h。Apply the quotient rule to f ind d y d x for y = x 2 − 5 x 3 + 2
::应用商数规则为 y=x2 - 5x3+2 查找 dydx 的 y=x2 - 5x3+3 规则d y d x = d d x [ x 2 − 5 x 3 + 2 ] = ( x 3 + 2 ) ⋅ ( x 2 − 5 ) ′ − ( x 2 − 5 ) ⋅ ( x 3 + 2 ) ′ ( x 3 + 2 ) 2 = ( x 3 + 2 ) ( 2 x ) − ( x 2 − 5 ) ( 3 x 2 ) ( x 3 + 2 ) 2 = 2 x 4 + 4 x − 3 x 4 + 15 x 2 ( x 3 + 2 ) 2 = − x 4 + 15 x 2 + 4 x ( x 3 + 2 ) 2 = x ( − x 3 + 15 x + 4 ) ( x 3 + 2 ) 2
::uddx=ddx[x2-5x3+2]=(x3+2) =(x3+2) =(x2+2) =(x2-5) =(x3+2) =(x3+2)-2=(x3+2)-2(x2)-(x2-2)(x3+5)(3x2)(x3+2)(x3+2)(x3+2)2=2x4+4x3-3x4(x3+3x3+3+2)2*x4+4x(x3+2)2=(x3+15x4)(x4)(x3+2)2=(x3+2)Examples
::实例Example 1
::例1Earlier, you were asked if the limit properties apply to . Can you use the limit properties for the product and quotient of two functions (e.g., the limit of the product is the product of the limits) to formulate the same rules for the derivatives? If you said no, you were correct!
::早些时候, 有人询问您限制属性是否适用于 。 您能否使用两个函数( 例如, 产品限制是限制的产物) 的产品限制属性和商数来为衍生物制定相同的规则? 如果您拒绝, 您是对的 !For example, the definition of the derivative for the product of two differentiable functions is:
::例如,两种不同功能产品衍生物的定义是:d d x [ f ( x ) g ( x ) ] = lim h → 0 f ( x + h ) g ( x + h ) − f ( x ) g ( x ) h
::ddx[ f( x) g( x)] =limh0f( x+h) g( x+h) - f( x) g( x) hIf you compare this result to the product of the derivatives of the two functions you will find they are not equal (left as an exercise). The same applies to the quotient results.
::如果您将这个结果与这两个函数的衍生物的产物进行比较, 你会发现它们不相等( 留作练习) 。 这同样适用于商数结果 。Contrary to the limit results:
::与限制结果相反:d d x [ f ( x ) g ( x ) ] IS NOT EQUAL TO d d x f ( x ) ⋅ d d x g ( x ) d d x [ f ( x ) g ( x ) ] IS NOT EQUAL TO d d x f ( x ) d d x g ( x )
::ddx[f(x)(x)g(x)] 与 dxf(x) ddxg(x) ddxxx(x) ddxx[f(x)g(x)] 与 dxf(x) ddxg(x) 不是 EQQQQQExample 2
::例2At which point(s) does the graph of y = x x 2 + 9 have a horizontal tangent line?
::y=xx2+9 的图形在哪个点有水平正切线 ?Since the slope of a horizontal line is zero, and since the derivative of a function signifies the slope of the tangent line, then taking the derivative and equating it to zero will enable us to find the points at which the slope of the tangent line is equal to zero, i.e., the locations of the horizontal tangents. Notice that we will need to use the quotient rule here:
::由于水平线的斜坡为零,并且由于函数的衍生物表示正切线的斜坡,然后将衍生物乘以正切线,将其等同为零,将使我们能够找到正切线的斜坡等于零的点,即横向正切点的位置。请注意,我们需要在此使用商数规则:y = x x 2 + 9 y ′ = ( x 2 + 9 ) ⋅ f ′ ( x ) − x ⋅ g ′ ( x 2 + 9 ) ( x 2 + 9 ) 2 = 0 = ( x 2 + 9 ) ( 1 ) − x ( 2 x ) ( x 2 + 9 ) 2 = 0
::y=xx2+9y(x2+99)f}(x)-x}g}(x2+9) (x2+9) 2=0=(x2+9) (1)-x(2x)(x2+9)2=0Multiply both sides by ( x 2 + 9 ) 2 ,
::用(x2+9) 乘以(x2+9) 2, 乘以两边, 乘以(x2+9) 2 ;x 2 + 9 − 2 x 2 = 0 x 2 = 9 x = ± 3
::x2+9- 2x2=0x2=9x%3Therefore, at x = − 3 and x = 3 , the tangent line is horizontal.
::因此,在 x3 和 x=3 时,正切线为水平线。Example 3
::例3What is the derivative of g ( x ) = ( − x − 1 ) ( x + 1 ) ?
::g(x) =(- x-1) (x+1) 的衍生物是什么?d y d x = d d x [ ( − x − 1 ) ( x + 1 ) ] … Problem = ( − x − 1 ) d d x [ x + 1 ] + d d x [ − x − 1 ] ⋅ ( x + 1 ) … Apply Product Rule = ( − x − 1 ) ( 1 ) + ( − 1 ) ⋅ ( x + 1 ) … Evaluate = − 2 ( x + 1 ) … Simplify d y d x = − 2 ( x + 1 )
::didx=ddx[( -x-1 (x+1)]... 问题=( -x-1) ddx[x+1]+ddx[+1]+ddx[-x-1](x+1)]。 应用产品规则=(-x-1)(1)+(-1)+(-1)+(x+1). Evaluate=2(x+1). 简化dx=(x+1)2(x+1). 简化dx=(2(x+1)Review
::回顾For #1-2, find the derivative using the product rule
::#1-2,使用产品规则找到衍生物-
y
=
(
x
3
−
3
x
2
+
x
)
⋅
(
2
x
3
+
7
x
4
)
::y= (x3- 3x2+x) = (2x3+7x4) -
y
=
(
1
x
+
1
x
2
)
(
3
x
4
−
7
)
::y=(1x+1x2)(3x4-7) -
What is the derivative of:
[
(
−
3
x
2
+
x
+
4
)
(
−
3
x
−
3
)
]
?
::[(-3x2+x+4)(-3x-3)]的衍生物是什么? -
Given:
k
(
−
2
)
=
0
k
′
(
−
2
)
=
18
. Find
r
(
−
2
)
when
(
k
r
)
′
(
−
2
)
=
54
::给定 : k( - 2) = 0k} ( - 2) = 18 。 当 ( kr) = ( - 2) = 54 时查找 r ( - 2) 。 -
Given
g
(
x
)
=
(
4
x
2
−
4
x
−
5
)
(
3
x
−
3
)
. Find
g
′
(
2
)
::g(x) =( 4x2- 4x- 5) (3x- 3) 查找 g=(2) -
Find
d
d
x
[
(
x
2
−
3
)
(
−
2
x
2
+
4
x
−
1
)
]
::查找 ddx[( (x2- 3) (- 2x2+4x- 1)] -
Given
t
(
1
)
=
0
t
′
(
1
)
=
17
. Find
a
(
1
)
when
(
t
a
)
′
(
1
)
=
272
::给 t(1) = 0t(1) = 17. 查找 a(1) (ta) = 272 -
Given
d
(
x
)
=
(
2
x
2
+
3
x
−
1
)
(
2
x
+
1
)
. Find
d
′
(
−
1
)
::给定 d( x) = ( 2x2+3x- 1) (2x+1) 。 查找 d{( 1) -
y
=
(
x
3
+
2
x
+
1
)
(
4
x
4
−
7
x
−
8
)
. Find
d
y
d
x
.
::y=(x3+2x+1)(4x4-7x-8)。 查找。 -
y
=
x
2
+
2
√
4
x
. Write an equation for
y
′
.
::y=x2+24x. 写一个y=y的方程。 -
y
=
(
2
x
5
+
x
4
−
x
3
−
x
2
−
x
)
2
. Write an equation for the line tangent to
y
at
x
=
−
1
.
::y= (2x5+x4- x3- x2- x) 2. 在 x @% 1 处为正切线y 写一个方程式。 -
y
=
2
x
3
−
1
x
. Find
y
′
.
::y=2x3 -1x. 找到你. -
y
=
(
2
x
+
7
)
(
x
2
−
10
)
(
3
x
2
+
3
x
+
5
)
. Find
d
y
d
x
.
::y=( 2x+7)( x2- 10) (3x2+3x+5) 。 -
Derive the Quotient Rule using the Product Rule.
::使用产品规则引号法则。 -
Suppose
u
′
(
0
)
=
98
and
(
u
q
)
′
(
0
)
=
7
. Find
q
(
0
)
assuming
u
(
0
)
=
0
::假设 u_(0)=98和(uq)_(0)=7. 假设 u(0)=0,查找 q(0) -
Given:
b
(
x
)
=
x
2
−
5
x
+
4
−
5
x
+
2
What is:
b
′
(
2
)
?
::b(x)=x2-5x+4-5x+2 -
y
=
x
+
1
2
x
−
1
. Find
d
2
y
d
x
2
.
::y=x+12x-1. 查找 d2ydx2。 -
y
=
x
3
−
3
x
2
+
1
. Find
y
′
.
::y=x3 - 3x2+1. 查找您。 -
y
=
x
2
+
6
x
+
5
x
+
5
. Find
d
y
d
x
.
::y=x2+6x+5x+5。 查找 dydx。 -
y
=
x
2
(
x
−
3
)
x
5
−
5
. Find
y
′
when
x
=
−
1
.
::y=x2( x- 3) x5 - 5. 查找您在 x% 1 时的值 。 -
f
(
x
)
=
x
5
−
3
x
3
−
1
4
. Find
f
′
′
(
x
)
.
::fx) =x5 - 3x3 - 14. 查找 f( x) 。
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
y
=
(
x
3
−
3
x
2
+
x
)
⋅
(
2
x
3
+
7
x
4
)