章节大纲

  • In a previous concept you learned how to find the derivative of a composite function using the . An obvious question in discussing antiderivatives: Is there some similar rule or method that can help in finding the of a composite function? The answer is yes! By performing a change of variable, or variable substitution, the integrand can sometimes be made so that it is easier to evaluate, or find an antiderivative.
    ::在先前的概念中,您学会了如何使用 。在讨论抗降解剂时,一个显而易见的问题:是否有类似的规则或方法可以帮助找到复合函数?答案是肯定的!通过改变变数或变数替代,有时可以使整数变得更容易评估或找到抗降解剂。

    Integration by Substitution
    ::以替代方式的融合

    Let’s illustrate the problem and solution.
    ::让我们来说明问题和解决办法。

    Suppose we needed to compute the following integral:
    ::假设我们需要计算以下组成部分:

    [ 2 x + 1 ] 2 d x
    ::[2x+1] 2dx

    We are looking for an antiderivative F of f , and can put together a solution by either of the following ways:
    ::我们正在寻找F的抗降解F,我们可以通过下列两种方式提出解决办法:

    • Expand the integrand into the polynomial f ( x ) = 4 x 2 + 4 x + 1 and use the Sum Rule for evaluating an integrand to obtain F ( x ) = 4 3 x 3 + 4 2 x 2 + x + C ; or
      ::将整数扩大为多位 f( x) = 4x2+4x+1, 并使用 Sum 规则评估整数以获取 F( x) = 43x3+42x2+xC;或
    • Use our knowledge of differentiation to put together the function  F such that F ( x ) = 1 3 2 [ 2 x + 1 ] 3 + C .
      ::利用我们的差异知识将功能F(x)=132[2x+1]3+C结合起来。

    Let’s consider a different approach. We recognize the function f ( x ) = [ 2 x + 1 ] 2 as a composite function f g = f ( g ( x ) ) , with f ( x ) = x 2 and g ( x ) = 2 x + 1 . We know how to find the antiderivative of f ( x ) = x 2 . But how do we factor in g ( x ) = 2 x + 1 ?
    ::让我们考虑另一种方法。 我们确认函数 f( x) =[ 2x+1] 。 我们确认函数 f( x) =[ 2x+1] 是一个复合函数 fg= f( g( x) ) , 与 f( x) =x2 和 g( x) = 2x+1. 。 我们知道如何找到 f( x) =x2 的抗衍生物。 但我们如何以 g( x) = 2x+1 计数 ?

    1. Make the substitution u = 2 x + 1
      ::替换 u=2x+1
    2. Then d u d x = 2 , or d u = 2 d x . This means d x = d u 2 .
      ::然后是 dudx=2, 或 du=2dx。 这意味着 dx=du2 。
    3. Now the integral can be represented as [ 2 x + 1 ] 2 d x = u 2 d u 2 = 1 2 u 2 d u , which we know how to integrate.
      ::整体体现在可以以 @[2x+1]2dx@u2du2=12\u2表示, 我们知道如何整合。
    4. The new integral is evaluated to find the antiderivative F ( u ) = 1 2 u 2 d u = 1 3 2 u 3 + C .
      ::对新的整体体进行评估,以找到F(u)=12u2du=132u3+C的抗降解性F(u)=12u2du=132u3+C。
    5. Finally, we can return to using the variable x to get F ( x ) = 1 3 2 [ 2 x + 1 ] 3 + C .
      ::最后,我们可以回到使用变量 x 来获取 F(x) = 13.2[2x+1]3+C 。

    Therefore,
    ::因此,

    [ 2 x + 1 ] 2 d x = 1 3 2 [ 2 x + 1 ] 3 + C .
    ::[2x+1]2dx=13}2[2x+1]3+C。

    The technique we have used is called Integration by Substitution , a technique that can often simplify the integrand considerably and allow us to recognize an antiderivative.
    ::我们使用的技术称为 " 替代融合 " ,这种技术往往可以大大简化原状,使我们认识到一种抗降解剂。

    Sometimes the integrand looks more complex, and requires more effort to recognize how to simplify.
    ::有时,一万格朗看起来更复杂,需要更加努力地认识到如何简化。

    Suppose we needed to compute the following integral:
    ::假设我们需要计算以下组成部分:

    3 x 2 1 + x 3 d x
    ::3x21+x3dx

    The integrand is the product of 3 x 2 and a composite function f g = f ( g ( x ) ) , with f ( x ) = x and g ( x ) = 1 + x 3 .
    ::Integrand 是 3x2 和 f(x) 和 g(x) = 1+x3 的复合函数 fg=f(g(x)x) 和 g(x) = 1+x3 的产物。

    Let’s try to use the substitution approach and see what happens.
    ::让我们尝试使用替代方法, 看看会发生什么。

    1. Let u = 1 + x 3 .
      ::Letu = 1+x3 。
    2. Differentiate both sides so d u = 3 x 2 d x ; we recognize that  3 x 2 is g ( x ) , one of the factors in the integrand, and this fact is very helpful.
      ::将两边区分为 du= 3x2dx; 我们认识到, 3x2 是g*(x), 这是整数的一个因素, 这一事实非常有用。

    Note that integral is of the form  f ( g ( x ) ) g ( x ) d x = F ( g ( x ) ) g ( x ) d x .
    ::注意,整件为表 {f(g(x))}}}{g}}{g}}}}(x)dx}}{F}}(g(x)}}}}}}(x)dxx。

    1. Change the original integral in  x to an integral in u :
      ::将x的原积分修改为 u 的积分:

    1 + x 3 3 x 2 d x = u d u , where u = 1 + x 3 and d u = 3 x 2 d x .
    ::+1+x3=3x2dx=udu,其中u=1+x3和du=3x2dx。

    1. Integrate with respect to u :
      ::结合u:

    u d u = u 1 2 d u = 2 3 u 3 2 + C .
    ::u12du=23u32+C。

    1. Now change the answer back to x :
      ::现在将回答修改为 x:

    2 3 u 3 2 + C = 2 3 ( 1 + x 3 ) 3 2 + C
    ::2332+C=23(1+x3)32+C

    Substitution is a very powerful method for solving a variety of problems.
    ::替代是解决各种问题的非常有力的方法。

    Compute the following indefinite integral:
    ::计算以下不定期整体部分:

    x 2 e x 3 d x .
    ::x2ex3dx.

    We note that the current problem is not of the form F ( g ( x ) ) g ( x ) d x , like the last example, but that the derivative of  x 3 is 3 x 2 . This gives a clue to what the substitution should be.
    ::我们注意到,当前的问题不是像最后一个例子那样的表 {F}(g(x))}}}(x)}}(x)dx,而是 x3 的衍生物是 3x2 。 这为替换应该是什么提供了线索。

    Let u = x 3 .
    ::Letu =x3 。

    Then d u = 3 x 2 d x which means 1 3 d u = x 2 d x .
    ::然后是DU=3x2dx,这意味着13du=x2dx。

    Now we can change the original integral in  x to an integral in  u and integrate:
    ::现在,我们可以将x的原有机体改为u的有机体,并整合:

    x 2 e x 3 d x = e u ( 1 3 d u ) = 1 3 e u d u = 1 3 e u + C .
    ::X2ex3dxeu(13du)=13eudu=13eu+C。

    Changing back to x , we have
    ::回换到 x, 我们发现

    x 2 e x 3 d x = 1 3 e x 3 + C .
    ::X2ex3dx=13ex3+C。

    Examples
    ::实例

    Example 1
    ::例1

    Suppose we needed to compute the following integral:
    ::假设我们需要计算以下组成部分:

    x sin ( 3 x 2 + 1 ) 3 x 2 + 1 d x
    ::xsin( 3x2+1) {3x2+1} 3x2+1dx

    We notice that the sine function in the integrand is a composite function f g = f ( g ( x ) ) , with f ( x ) = sin x and g ( x ) = 3 x 2 + 1 .
    ::我们注意到,正弦函数在整数中是 fg=f(g(x)),与 f(x)=sinx 和 g(x)=3x2+1 的复合函数 fg=f(g(x)x)), 与 f(x)=sinx 和 g(x)=3x2+1 。

    Let’s try to use the substitution approach and see what happens.
    ::让我们尝试使用替代方法, 看看会发生什么。

    1. Let u = 3 x 2 + 1 .
      ::让我们% 3x2+1 。
    2. Differentiate both sides so d u = 6 x 2 3 x 2 + 1 d x ; we recognize that d u 3 = x 3 x 2 + 1 d x is 1 3 g ( x ) , one of the factors in the integrand, and this fact is very helpful.
      ::将两边区分为 du= 6x2}3x2+1dx; 我们认识到, du3=x}3x2+1dx是 13g_(x), 这是整数中的因素之一, 这一事实非常有用 。

    Note that integral is of the form f ( g ( x ) ) g ( x ) d x = F ( g ( x ) ) g ( x ) d x .
    ::注意,整件为表 {f(g(x))}}}{g}}{g}}}}(x)dx}}{F}}(g(x)}}}}}}(x)dxx。

    1. Change the original integral in x to an integral in u :
      ::将x的原积分修改为 u 的积分:

    x sin 3 x 2 + 1 3 x 2 + 1 d x = 1 3 sin u   d u
    ::3x2+1x3x2+1dx=13sinu

    1. Integrate with respect to u :
      ::结合u:

    1 3 sin u   d u = 1 3 cos u + C
    ::1313cosu+C 13sinudu13cosu+C

    1. Now change the answer back to  x :
      ::现在将回答修改为 x:

    x sin 3 x 2 + 1 3 x 2 + 1 d x = 1 3 cos 3 x 2 + 1 + C
    ::Xsin3x2+1}3x2+1x2+1dx13cos3x2+1+C

    Review
    ::回顾

    Compute the integrals:
    ::计算积分 :

    1. ( 3 x + 8 ) 11 d x
      :伤心 3x+8) 11dx
    2. 5 ( 5 x 3 ) 3 d x
      ::5(5x-3)3dx
    3. sin 3 x d x
      ::辛3xxx
    4. 5 cos π 2 x d x
      ::5cos%2xxxx
    5. x ( 2 x 2 + 1 ) 2 d x
      ::*x( 2x2+1) 2dx
    6. ( 2 x + 1 ) ( x 2 + x 1 ) 4 d x
      :伤心 2x+1)( x2+x- 1) 4dx
    7. 4 x 3 ( 7 x 4 + 6 ) 5 d x
      ::4x3( 7x4+6) 5dx
    8. x 5 ( 2 x 6 + 7 ) 3 d x
      ::x5( 2x6+7) 3dx
    9. sec 2 x tan x d x
      ::
    10. x 2 x + 1 d x
      ::x2x+1dx
    11. x 2 ( 5 x 3 + 3 ) 3 2 d x
      ::x2( 5x3+3) 32dx
    12. x 3 1 x 2 d x
      ::x31 -x2dx
    13. x 2 x 3 + 9 d x
      ::x2x3+9dx
    14. ( x e x 2 ) d x
      :伤心xex2)dx
    15. ( 1 x 2 e 1 x ) d x
      :伤心 1x2e1x) dx

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。