5.3 无限期融合:变数变化
章节大纲
-
In a previous concept you learned how to find the derivative of a composite function using the . An obvious question in discussing antiderivatives: Is there some similar rule or method that can help in finding the of a composite function? The answer is yes! By performing a change of variable, or variable substitution, the integrand can sometimes be made so that it is easier to evaluate, or find an antiderivative.
::在先前的概念中,您学会了如何使用 。在讨论抗降解剂时,一个显而易见的问题:是否有类似的规则或方法可以帮助找到复合函数?答案是肯定的!通过改变变数或变数替代,有时可以使整数变得更容易评估或找到抗降解剂。Integration by Substitution
::以替代方式的融合Let’s illustrate the problem and solution.
::让我们来说明问题和解决办法。Suppose we needed to compute the following integral:
::假设我们需要计算以下组成部分:∫ [ 2 x + 1 ] 2 d x
::[2x+1] 2dxWe are looking for an antiderivative F of f , and can put together a solution by either of the following ways:
::我们正在寻找F的抗降解F,我们可以通过下列两种方式提出解决办法:-
Expand the integrand into the polynomial
f
(
x
)
=
4
x
2
+
4
x
+
1
and use the Sum Rule for evaluating an integrand to obtain
F
(
x
)
=
4
3
x
3
+
4
2
x
2
+
x
+
C
; or
::将整数扩大为多位 f( x) = 4x2+4x+1, 并使用 Sum 规则评估整数以获取 F( x) = 43x3+42x2+xC;或 -
Use our knowledge of differentiation to put together the function
F
such that
F
(
x
)
=
1
3
⋅
2
[
2
x
+
1
]
3
+
C
.
::利用我们的差异知识将功能F(x)=132[2x+1]3+C结合起来。
Let’s consider a different approach. We recognize the function f ( x ) = [ 2 x + 1 ] 2 as a composite function f ∘ g = f ( g ( x ) ) , with f ( x ) = x 2 and g ( x ) = 2 x + 1 . We know how to find the antiderivative of f ( x ) = x 2 . But how do we factor in g ( x ) = 2 x + 1 ?
::让我们考虑另一种方法。 我们确认函数 f( x) =[ 2x+1] 。 我们确认函数 f( x) =[ 2x+1] 是一个复合函数 fg= f( g( x) ) , 与 f( x) =x2 和 g( x) = 2x+1. 。 我们知道如何找到 f( x) =x2 的抗衍生物。 但我们如何以 g( x) = 2x+1 计数 ?-
Make the substitution
u
=
2
x
+
1
::替换 u=2x+1 -
Then
d
u
d
x
=
2
, or
d
u
=
2
d
x
. This means
d
x
=
d
u
2
.
::然后是 dudx=2, 或 du=2dx。 这意味着 dx=du2 。 -
Now the integral can be represented as
∫
[
2
x
+
1
]
2
d
x
=
∫
u
2
d
u
2
=
1
2
∫
u
2
d
u
, which we know how to integrate.
::整体体现在可以以 @[2x+1]2dx@u2du2=12\u2表示, 我们知道如何整合。 -
The new integral is evaluated to find the antiderivative
F
(
u
)
=
1
2
∫
u
2
d
u
=
1
3
⋅
2
u
3
+
C
.
::对新的整体体进行评估,以找到F(u)=12u2du=132u3+C的抗降解性F(u)=12u2du=132u3+C。 -
Finally, we can return to using the variable
x
to get
F
(
x
)
=
1
3
⋅
2
[
2
x
+
1
]
3
+
C
.
::最后,我们可以回到使用变量 x 来获取 F(x) = 13.2[2x+1]3+C 。
Therefore,
::因此,∫ [ 2 x + 1 ] 2 d x = 1 3 ⋅ 2 [ 2 x + 1 ] 3 + C .
::[2x+1]2dx=13}2[2x+1]3+C。The technique we have used is called Integration by Substitution , a technique that can often simplify the integrand considerably and allow us to recognize an antiderivative.
::我们使用的技术称为 " 替代融合 " ,这种技术往往可以大大简化原状,使我们认识到一种抗降解剂。Sometimes the integrand looks more complex, and requires more effort to recognize how to simplify.
::有时,一万格朗看起来更复杂,需要更加努力地认识到如何简化。Suppose we needed to compute the following integral:
::假设我们需要计算以下组成部分:∫ 3 x 2 √ 1 + x 3 d x
::3x21+x3dxThe integrand is the product of 3 x 2 and a composite function f ∘ g = f ( g ( x ) ) , with f ( x ) = √ x and g ( x ) = 1 + x 3 .
::Integrand 是 3x2 和 f(x) 和 g(x) = 1+x3 的复合函数 fg=f(g(x)x) 和 g(x) = 1+x3 的产物。Let’s try to use the substitution approach and see what happens.
::让我们尝试使用替代方法, 看看会发生什么。-
Let
u
=
1
+
x
3
.
::Letu = 1+x3 。 -
Differentiate both sides so
d
u
=
3
x
2
d
x
; we recognize that
3
x
2
is
g
′
(
x
)
, one of the factors in the integrand, and this fact is very helpful.
::将两边区分为 du= 3x2dx; 我们认识到, 3x2 是g*(x), 这是整数的一个因素, 这一事实非常有用。
Note that integral is of the form ∫ f ( g ( x ) ) ⋅ g ′ ( x ) d x = ∫ F ′ ( g ( x ) ) ⋅ g ′ ( x ) d x .
::注意,整件为表 {f(g(x))}}}{g}}{g}}}}(x)dx}}{F}}(g(x)}}}}}}(x)dxx。-
Change the original integral in
x
to an integral in
u
:
::将x的原积分修改为 u 的积分:
∫ √ 1 + x 3 ⋅ 3 x 2 d x = ∫ √ u d u , where u = 1 + x 3 and d u = 3 x 2 d x .
::+1+x3=3x2dx=udu,其中u=1+x3和du=3x2dx。-
Integrate with respect to
u
:
::结合u:
∫ √ u d u = ∫ u 1 2 d u = 2 3 u 3 2 + C .
::u12du=23u32+C。-
Now change the answer back to
x
:
::现在将回答修改为 x:
2 3 u 3 2 + C = 2 3 ( 1 + x 3 ) 3 2 + C
::2332+C=23(1+x3)32+CSubstitution is a very powerful method for solving a variety of problems.
::替代是解决各种问题的非常有力的方法。Compute the following indefinite integral:
::计算以下不定期整体部分:∫ x 2 e x 3 d x .
::x2ex3dx.We note that the current problem is not of the form ∫ F ′ ( g ( x ) ) ⋅ g ′ ( x ) d x , like the last example, but that the derivative of x 3 is 3 x 2 . This gives a clue to what the substitution should be.
::我们注意到,当前的问题不是像最后一个例子那样的表 {F}(g(x))}}}(x)}}(x)dx,而是 x3 的衍生物是 3x2 。 这为替换应该是什么提供了线索。Let u = x 3 .
::Letu =x3 。Then d u = 3 x 2 d x which means 1 3 d u = x 2 d x .
::然后是DU=3x2dx,这意味着13du=x2dx。Now we can change the original integral in x to an integral in u and integrate:
::现在,我们可以将x的原有机体改为u的有机体,并整合:∫ x 2 e x 3 d x = ∫ e u ( 1 3 d u ) = 1 3 ∫ e u d u = 1 3 e u + C .
::X2ex3dxeu(13du)=13eudu=13eu+C。Changing back to x , we have
::回换到 x, 我们发现∫ x 2 e x 3 d x = 1 3 e x 3 + C .
::X2ex3dx=13ex3+C。Examples
::实例Example 1
::例1Suppose we needed to compute the following integral:
::假设我们需要计算以下组成部分:∫ x sin ( √ 3 x 2 + 1 ) √ 3 x 2 + 1 d x
::xsin( 3x2+1) {3x2+1} 3x2+1dxWe notice that the sine function in the integrand is a composite function f ∘ g = f ( g ( x ) ) , with f ( x ) = sin x and g ( x ) = √ 3 x 2 + 1 .
::我们注意到,正弦函数在整数中是 fg=f(g(x)),与 f(x)=sinx 和 g(x)=3x2+1 的复合函数 fg=f(g(x)x)), 与 f(x)=sinx 和 g(x)=3x2+1 。Let’s try to use the substitution approach and see what happens.
::让我们尝试使用替代方法, 看看会发生什么。-
Let
u
=
√
3
x
2
+
1
.
::让我们% 3x2+1 。 -
Differentiate both sides so
d
u
=
6
x
2
√
3
x
2
+
1
d
x
; we recognize that
d
u
3
=
x
√
3
x
2
+
1
d
x
is
1
3
g
′
(
x
)
, one of the factors in the integrand, and this fact is very helpful.
::将两边区分为 du= 6x2}3x2+1dx; 我们认识到, du3=x}3x2+1dx是 13g_(x), 这是整数中的因素之一, 这一事实非常有用 。
Note that integral is of the form ∫ f ( g ( x ) ) ⋅ g ′ ( x ) d x = ∫ F ′ ( g ( x ) ) ⋅ g ′ ( x ) d x .
::注意,整件为表 {f(g(x))}}}{g}}{g}}}}(x)dx}}{F}}(g(x)}}}}}}(x)dxx。-
Change the original integral in
x
to an integral in
u
:
::将x的原积分修改为 u 的积分:
∫ x sin √ 3 x 2 + 1 √ 3 x 2 + 1 d x = 1 3 ∫ sin u d u
::3x2+1x3x2+1dx=13sinu-
Integrate with respect to
u
:
::结合u:
1 3 ∫ sin u d u = − 1 3 cos u + C
::1313cosu+C 13sinudu13cosu+C-
Now change the answer back to
x
:
::现在将回答修改为 x:
∫ x sin √ 3 x 2 + 1 √ 3 x 2 + 1 d x = − 1 3 cos √ 3 x 2 + 1 + C
::Xsin3x2+1}3x2+1x2+1dx13cos3x2+1+CReview
::回顾Compute the integrals:
::计算积分 :-
∫
(
3
x
+
8
)
11
d
x
:3x+8) 11dx
-
∫
5
(
5
x
−
3
)
3
d
x
::5(5x-3)3dx -
∫
sin
3
x
d
x
::辛3xxx -
∫
5
cos
π
2
x
d
x
::5cos%2xxxx -
∫
x
(
2
x
2
+
1
)
2
d
x
::*x( 2x2+1) 2dx -
∫
(
2
x
+
1
)
(
x
2
+
x
−
1
)
4
d
x
:2x+1)( x2+x- 1) 4dx
-
∫
4
x
3
(
7
x
4
+
6
)
5
d
x
::4x3( 7x4+6) 5dx -
∫
x
5
(
2
x
6
+
7
)
3
d
x
::x5( 2x6+7) 3dx -
∫
sec
2
x
tan
x
d
x
:: -
∫
x
√
2
x
+
1
d
x
::x2x+1dx -
∫
x
2
(
5
x
3
+
3
)
3
2
d
x
::x2( 5x3+3) 32dx -
∫
x
3
√
1
−
x
2
d
x
::x31 -x2dx -
∫
x
2
√
x
3
+
9
d
x
::x2x3+9dx -
∫
(
x
⋅
e
x
2
)
d
x
:xex2)dx
-
∫
(
1
x
2
⋅
e
1
x
)
d
x
:1x2e1x) dx
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
Expand the integrand into the polynomial
f
(
x
)
=
4
x
2
+
4
x
+
1
and use the Sum Rule for evaluating an integrand to obtain
F
(
x
)
=
4
3
x
3
+
4
2
x
2
+
x
+
C
; or