8.8 使用三角测量替代物的综合物
Section outline
-
The students of a school are painting a large mural that features the face of the school’s founder. The two eyes of the mural are formed as two containing the white sclera portion, and an iris/pupil formed by a circle whose radius is the semi-minor axis of the ellipse. If the ellipse is , what is the ratio of the areas of the white sclera portion and the iris/pupil portion of the eyes?
::一个学校的学生正在画一幅巨幅壁画,上面有该校创始人的脸。 壁画的两只眼睛组成为两只两只,上面含有白螺旋形部分,另一双是圆形的虹膜/学生,圆圆的半圆半径是椭圆的半最小轴。 如果椭圆是x29+y24=1,那么白螺旋形部分和双眼的虹膜/学生部分的比例是多少?Trigonometric Substitutions
::三角测量替代物When we are faced with integrals that involve radicals of the forms shown in the table below, we may make the identified trigonometric substitutions to eliminate the radical.
::当我们面对涉及下表所示形式激进的组合体时,我们可采用已查明的三角代用法来消除激进。Expression In Integrand
::表达式整数Trigonometric Substitution
::三角代谢Identity Needed
::所需身份
::a2 - x2
::x=asin
::1 - 辛222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222
::a2+x2 键
::x=atan
::1+tan2sec2
::x2 - a2 级
::x=asec
::秒21=tan22222221=tan2222222222222221=tan222222221=tan222222222222222222221=tan21=tan222222221=tan2221=tan22221=tan222221=tan2222222For example, to eliminate the radical in the expression
::例如,消除A2-x2表达式中的激进We can make the substitution (with limited to the range of the inverse sine)
::我们可以做替代 x=asin( 限定为反正弦的范围) 。which yields,
::能生产,可生产,
::a2-x2=a2-a2-a2sin2a2(1-sin2)=acos2}a2-x2=acos*a2-x2=acos*In the table above, the second column lists the most common substitutions. These come from the reference right triangles, as shown in the figure below. We want any of the substitutions we use in the integration to be reversible so we can change back to the original variable afterward. The right triangles in the figure below will help us reverse our substitutions.
::在以上表格中,第二列列出了最常见的替代物。这些替代物来自参考右三角,如下图所示。我们希望在整合中使用的任何替代物都可逆转,以便我们可以在其后转换回原来的变量。下图中正确的三角物将帮助我们逆转替代物。Trigonometric substitutions and their reference right triangles. Now, using what you know about trigonometric substitutions, let's evaluate .
::现在,利用你所了解的关于三角代用的知识, 让我们来评估一下dxx24 -x2。Our goal first is to eliminate the radical. To do so, we see that the form is associated with the trigonometric substitution , , so that
::我们的目标首先是消灭激进。要这样做,我们可以看到表4 - x2与三角替代x=2sin,(22)有关,所以dx=2cosd2。Our integral becomes
::我们的有机体成为
::dxx24 -x222222222222222222144442214csc2ddx24_x214CCUp to this stage, we are done integrating. To complete the solution however, we need to express in terms of . In the figure of triangles above, the second triangle represents our case, with . So and , thus .
::在此阶段之前, 我们完成整合。 但是, 要完成解决方案, 我们需要以 x 表示 com 。 在以上三角形图中, 第二个三角形代表我们的情况, 以 = 2 表示 x = 2 sin 和 2 cos = 4 - x2 表示, 也就是 cot = 4 - x2x( 以 cocos sin 开始) 。Therefore
::因此,
::dxx24-x2144-x2x+C。Examples
::实例Example 1
::例1Earlier, you were asked to assume that the eye has the shape of an ellipse . Then you were asked to find the ratio of the areas of the white sclera portion and the iris/pupil portion of the eye which is shaped like a circle with radius equal to the semi-minor axis .
::早些时候,有人要求你假设眼睛的形状是椭圆 x29+y24=1。 然后,有人要求你找到白螺旋形部分面积和眼睛的虹膜/单子部分的比例,后者的形状像圆形,圆半径等于半角轴。The area of the ellipse minus the area of the circle gives the area of the white sclera portion of the eye.
::椭圆区域减去圆圈区域,表示眼睛白括弧部分的面积。What is the area of the ellipse ? Solving for in the equation yields , , for the upper part of the ellipse. The integral to determine the area of the ellipse can be written as . The integral can also be written as . If we let , so that , the integral can be written as:
::椭圆 x29+y24=1 的面积是多少? 方程式中的 y 溶解值为 y= y= 4-49x2, - 3xx}3 =3。 确定椭圆的面积的构件可以写成 Ae= 2334 - 49x2dx。 构件也可以写成 Ae= 4331 - (13x)2dx。 如果我们让 13x=sin = , 因此 dx= 3cos\\\xxxxx, 内装件可以写成 :
::Ae=4222222222226[222222=6662262626226226222262226222262262222262622222622222622226226222226222226222222222222The area of the iris/pupils is the area of a circle with radius 2. Thus .
::iris/publics的Ai区域是圆圆的区域,半径为2。 因此,Ai=(2)24。The area of the white sclera is therefore: .
::因此,白区域为:Ae-Ai=642。The ratio of the areas of the white sclera to iris/pupil is .
::白螺旋带面积与虹膜/学生面积之比是Ae-AiAi=2412。Example 2
::例2Evaluate .
::评估 x2 -3xxxAgain, we want to first to eliminate the radical. Consult the table above and substitute .
::再次,我们想首先消灭激进分子。请查看上面的表格并替换 x=3sec。Then .
::然后是Dx=3sectand。Substituting back into the integral,
::重置为整体体,
::X2- 3xxx%3sec233seec3sec tand32dx2- 3xdx=3(tan)+C... 使用 m=2 使用整体特性@tanmxdx=tanm- 1}xm- 1}xdx=tanm_1}xm_1} tanm_2}xdx=3(tan)+C... 使用 m=2 显示整体特性@tanmxdx=1}@xdxxx=2Looking at the triangles above, the third triangle represents our case, with , which means .
::从上面的三角形看, 第三个三角形代表我们的情况, 以a=3表示 tanx2 - 33。Substituting,
::以物配主者,
::x2-3xdx=3(tan)+C=3(x2-333-tan-1(x2-33))+C_x2-3xdx=x2-3-3-3-3tan-1(x2-3-3)+CExample 3
::例3Evaluate .
::评价*dx22x2+1。From the table above, let , then . Substituting into the integral, .
::从上面的表格中, 允许 x=tan, 然后 x=sec2d。 替换成集成件, dx22x2+1sec2dtan2n2n21 。But since ,
::但自从坦坦21=sec2,.
:dxx2x2+1) (sec2) (d) (d) (d) (d) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (a) (a) (a)
::======================================================================================================================= =====================================================================================================================================================================================================================================================================================================================================================================================================Looking at the triangles above, the first triangle represents our case, with .
::查看上面的三角形, 第一个三角形代表我们的情况, 以 a=1 表示 。So , and thus , which gives .
::所以 x=tan, 因此sinx1+x2, 给 csc1+x2x。Substituting,
::以物配主者,
::* dxx2x2+1 *csc*C*1+x2x+CExample 4
::例4Evaluate
::=%9+4x2dx
::9+4x2dx2(322+x2dx2(322+(32)2tan2}32seec2d... 使用替换 x=32tan}和 dx=32sec2}2(2) 3221+tan2sec2}92sec3}d9+4x2dx=94 (sec tan lnsectan}+C)Using and the associated right triangle above, yields
::使用 x=atan 和上面相关的右三角形, 产量and . Therefore
::tan2x3 和 se94+x232. 因此
::9+4x2dx=94( secnn@sec}+C=94( 94+x232xx32+94+x232+x32})+C=94( 49=12x9+4x9+4x2+20x2+ln12( 9+4x2+2x32)+C=12x9+4x9+4x2+2+94( ln9+4x2+2x__ ln13)+C=9+4x2x12x9+4x2+94_9+4x2+9x2+9+4x2+2x_C}Review
::回顾For #1-9, evaluate the integrals.
::一九号,评估整体体-
::4 - x2dx -
::19+x2dx -
::*x31-x2dx -
::11 - 9x2dx -
::*x34 -x2dx -
::1x2x2 - 36dx -
::1(x2+25)2dx -
::04x316 - x2dx -
(
Hint:
First use
-substitution, letting
)
::0ex1 - e2xdx (提示: 首用 u- 替代, let u=ex) -
Graph and then find the area of the surface generated by the curve
from
to
, and revolved about the
-axis.
::图形然后发现曲线 y=x2 从 x=0 到 x=1 所生成的表面区域, 并围绕 x 轴旋转 。
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -